ON HELICES AND MULTIPLE WIENER INTEGRALS OF A GAUSSIAN AUTOMORPHISM

TAKASHI SHIMANO

(Received November 26, 1979)

- 0. The purpose of this note is to represent helices of a Gaussian automorphism by the multiple Wiener integrals and to calculate the multiplicity of helices.
- 1. Let (Ω, \mathcal{F}, P) be a complete separable probability space and (T, \mathcal{F}_0) a system on Ω , that is, a pair of an automorphism of Ω and a complete sub- σ -field of \mathcal{F} such that
 - (a) $\bigvee_{n=-\infty}^{\infty} T^n \mathcal{F}_0 = \mathcal{F}_{\bullet}$
 - (b) $T\mathcal{F}_0 \supset \mathcal{F}_0$.

Let $H = L_0^2(\Omega)$ denote the Hilbert space of all squarely integrable real random variables with zero-expectations and H_n the subspace of H consisting of all elements measurable with respect to $T^n \mathscr{I}_0$ for each n.

DEFINITION 1. A process $X = (x_n)$ is called a helix for a system (T, \mathcal{F}_0) if the following conditions are satisfied:

- (a) $x_0 = 0$,
- (b) $x_n x_m \in H_n \ominus H_m$ for all m and n with m < n,
- (c) $(x_n x_m) \circ T^{-1} = x_{n+1} x_{m+1}$ for all m and n.

By the condition (b), $(x_n, T^n \mathscr{F}_0)_{n\geq 0}$ can be regarded as a square-integrable martingale and further by the condition (c), all x_n can be written as

$$x_n = \sum_{k=1}^n x \circ T^{-(k-1)}$$

for some $x \in H_1 \bigoplus H_0$.

DEFINITION 2. For helices $X=(x_n)$ and $X'=(x'_n)$, $\mu_{\langle X,X'\rangle}$ denotes the signed measure on (Ω,\mathscr{F}_0) such that

$$d\mu_{\langle x,x'
angle}=E[x_{\scriptscriptstyle 1}\!x'_{\scriptscriptstyle 1}\!\mid\!\mathscr{F}_{\scriptscriptstyle 0}]dP$$
 .

If $\mu_{\langle X,X'\rangle}$ is a null measure, we say that X and X' are strictly orthogonal. If X=X', then $\mu_{\langle X,X\rangle}$ is denoted simply by $\mu_{\langle X\rangle}$.

By the martingale property of helices, we can define the following which is similar to the martingale-transform: