Tôhoku Math. Journ. 34 (1982), 65-86.

ON GENERALIZED SIEGEL DOMAINS WITH EXPONENT (c_1, c_2, \dots, c_s) , II

Akio Kodama*

(Received April 13, 1981)

Introduction. This is a continuation of our previous paper [3], and we retain the terminology and notations there.

As a natural generalization of the notion of generalized Siegel domains in $\mathbb{C}^n \times \mathbb{C}^m$ with exponent c due to Kaup, Matsushima and Ochiai [2], we introduced in [3] the notion of generalized Siegel domains in $\mathbb{C}^n \times \mathbb{C}^{m_1} \times$ $\mathbb{C}^{m_2} \times \cdots \times \mathbb{C}^{m_s}$ with exponent (c_1, c_2, \cdots, c_s) . For a domain D in \mathbb{C}^N , we shall denote by $\operatorname{Aut}(D)$ the group of all holomorphic transformations of D onto itself. Then we say that D is a sweepable domain if there exist a subgroup Γ of $\operatorname{Aut}(D)$ and a compact subset K of D such that $\Gamma \cdot K =$ D. In [5], Vey investigated the structure of generalized Siegel domains in $\mathbb{C}^n \times \mathbb{C}^m$ with exponent c and gave an interesting characterization of Siegel domains of the first or the second kind in the sense of Pjateckii-Sapiro [4] among generalized Siegel domains. His results may be stated as follows:

THEOREM (Vey [5]). (A) Let \mathscr{D} be a sweepable generalized Siegel domain in $\mathbb{C}^n \times \mathbb{C}^m$ with exponent c. Then we have the following:

(A-1) If $c \neq 0$, then \mathscr{D} is a Siegel domain of the first or the second kind according as m = 0 or m > 0.

(A-2) If c = 0, then \mathscr{D} is the direct product $\mathscr{D}_1 \times \mathscr{D}_2$, where \mathscr{D}_1 is a Siegel domain of the first kind in \mathbb{C}^n and \mathscr{D}_2 is a homogeneous bounded circular domain in \mathbb{C}^m containing the origin.

(B) Let \mathscr{D} be a generalized Siegel domain in $\mathbb{C}^n \times \mathbb{C}^m$ with exponent c. Suppose that \mathscr{D} admits a discrete subgroup Γ of $\operatorname{Aut}(\mathscr{D})$ such that \mathscr{D}/Γ is compact. Then \mathscr{D} is symmetric.

As a generalization of (A-1) of Vey's theorem, we proved the following theorem in [3]:

THEOREM I (Kodama [3]). A sweepable generalized Siegel domain in $C^n \times C^{m_1} \times C^{m_2} \times \cdots \times C^{m_s}$ with exponent (c_1, c_2, \cdots, c_s) with $c_i \neq 0$ for

^{*} Partly supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan. Work also supported in part by the Sakkokai Foundation.