ON GENERALIZED SIEGEL DOMAINS WITH EXPONENT

$$
\left(c_{1}, c_{2}, \cdots, c_{s}\right), \text { II }
$$

Akio Kodama*

(Received April 13, 1981)

Introduction. This is a continuation of our previous paper [3], and we retain the terminology and notations there.

As a natural generalization of the notion of generalized Siegel domains in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent c due to Kaup, Matsushima and Ochiai [2], we introduced in [3] the notion of generalized Siegel domains in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{\boldsymbol{m}_{1}} \times$ $\boldsymbol{C}^{m_{2}} \times \cdots \times \boldsymbol{C}^{m_{s}}$ with exponent $\left(c_{1}, c_{2}, \cdots, c_{s}\right)$. For a domain D in \boldsymbol{C}^{N}, we shall denote by $\operatorname{Aut}(D)$ the group of all holomorphic transformations of D onto itself. Then we say that D is a sweepable domain if there exist a subgroup Γ of $\operatorname{Aut}(D)$ and a compact subset K of D such that $\Gamma \cdot K=$ D. In [5], Vey investigated the structure of generalized Siegel domains in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent c and gave an interesting characterization of Siegel domains of the first or the second kind in the sense of PjateckiiSapiro [4] among generalized Siegel domains. His results may be stated as follows:

Theorem (Vey [5]). (A) Let \mathscr{D} be a sweepable generalized Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent c. Then we have the following:
(A-1) If $c \neq 0$, then \mathscr{D} is a Siegel domain of the first or the second kind according as $m=0$ or $m>0$.
(A-2) If $c=0$, then \mathscr{D} is the direct product $\mathscr{D}_{1} \times \mathscr{D}_{2}$, where \mathscr{D}_{1} is a Siegel domain of the first kind in C^{n} and \mathscr{D}_{2} is a homogeneous bounded circular domain in C^{m} containing the origin.
(B) Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent c. Suppose that \mathscr{D} admits a discrete subgroup Γ of Aut($\mathscr{D})$ such that \mathscr{D} / Γ is compact. Then \mathscr{D} is symmetric.

As a generalization of (A-1) of Vey's theorem, we proved the following theorem in [3]:

Theorem I (Kodama [3]). A sweepable generalized Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m_{1}} \times \boldsymbol{C}^{m_{2}} \times \cdots \times \boldsymbol{C}^{m_{s}}$ with exponent $\left(c_{1}, c_{2}, \cdots, c_{s}\right)$ with $c_{i} \neq 0$ for

[^0]
[^0]: * Partly supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan. Work also supported in part by the Sakkokai Foundation.

