HOLOMORPHIC STRUCTURES MODELED AFTER HYPERQUADRICS

SHOSHICHI KOBAYASHI* AND TAKUSHIRO OCHIAI*

(Received April 20, 1982)

1. Introduction. In our joint paper with Inoue [7], we studied holomorphic affine connections and affine structures on complex manifolds and classified all compact complex surfaces admitting such structures. In [12] we studied holomorphic projective connections and projective structures and classified all compact complex surfaces admitting such structures. The one case left open in [12] has been solved recently ([13]). Both of our papers were partly based on Gunning's earlier work [4].

In the present paper we shall study holomorphic geometric structures modeled after a hyperquadric. Leaving the precise definitions of holomorphic CO(n; C)-structure and quadric structure to § 2, we shall explain them by the following diagram:

Model space	Infinitesimal structure	Local structure
Affine space C^n	Affine connection	Affine structure
Projective space P_nC	Projective connection	Projective structure
Quadric Q_n	CO(n; C)-structure	Quadric structure

By a quadric Q_n we mean a non-singular hyperquadric in $P_{n+1}C$; it is a holomorphic analogue of a sphere. A holomorphic CO(n; C)-structure may be considered as a holomorphic conformal connection, and a quadric structure as a flat holomorphic conformal structure.

In § 2, § 3 and § 4, we shall discuss general results valid for all dimension. In the subsequent sections we determine all compact complex surfaces admitting holomorphic CO(2; C)-structures and quadric structures. The 2-dimensional case is somewhat exceptional as in the case of conformal differential geometry. This is because a non-singular quadric Q_2 is isomorphic to $P_1C \times P_1C$, i.e., reducible. Hence, a holomorphic CO(2; C)-structure is equivalent (modulo passing to a double covering) to a splitting of the holomorphic tangent bundle into a direct sum of two holomorphic line subbundles, which in turn, is equivalent to a pair of mutually transversal holomorphic foliations of dimension 1. We take a

^{*} Partially supported by NSF Grant MCS 79-02552.