INFINITESIMAL AUTOMORPHISMS AND SECOND VARIATION OF THE ENERGY FOR HARMONIC FOLLATIONS*

FRANZ W. KAMBER AND PHILIPPE TONDEUR

(Received December 23, 1981)

Introduction. In [KT2] [KT3] we considered an energy functional for foliations \mathscr{F} on a smooth compact oriented manifold, defined with respect to a Riemannian metric $g_{\mathcal{M}}$ on \mathcal{M} . Harmonic Riemannian foliations were then characterized as critical foliations for this functional under an appropriate class of so called special variations (the relevant concepts are repeated in Section 2 of the present paper). The obvious analogy with the harmonic map theory of Eells and Sampson [ES] was the guiding principle.

In this paper we discuss the effect of curvature properties in the normal bundle of a Riemannian foliation \mathscr{F} on:

- (A) the existence of deformations of \mathcal{F} through harmonic foliations;
- (B) the existence of infinitesimal metric automorphisms of \mathcal{F} .

The curvature properties in the normal bundle of a Riemannian foliation (*R*-foliation) are described as follows. There is a unique metric and torsionfree connection \mathcal{V} in the normal bundle. Thus its curvature operator R_r is canonically attached to \mathscr{F} . The natural vanishing properties of R_r allow to view it as a skew-symmetric operator $R_r(\mu, \nu)$ on sections $\mu, \nu \in \Gamma Q$ with values in the bundle $\operatorname{End}(Q)$. If \mathscr{F} is viewed as modelled on a Riemannian manifold N by a Haefliger cocycle with isometric transition functions, then R_r is the curvature of the canonical connection on N pulled back by the local submersions with target Ndefining \mathscr{F} . The Ricci operator $\rho_r: Q \to Q$ of \mathscr{F} is then defined in terms of R_r by the usual formula (see (1.6) or (1.7) below).

We prove the following result.

THEOREM A. Let \mathscr{F} be a Riemannian foliation on a compact and oriented manifold M. Let $g_{\mathfrak{M}}$ be a bundle-like metric on M in the sense of Reinhart [R], and assume \mathscr{F} to be harmonic with respect to $g_{\mathfrak{M}}$. Assume the Ricci operator $\rho_{\mathfrak{F}}$ of \mathscr{F} to be ≤ 0 everywhere, and < 0 for at least one point $x \in M$. Then:

(i) there is no special variation of \mathcal{F} through harmonic foliations;

^{*} Work supported in part by NSF Grant MCS 79-00256.