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Let (Ω, F, P) be a complete probability space equipped with a non-
decreasing right continuous family (Ft) of sub σ-fields of F such that Fo

contains all null sets. We shall use the notations given in Meyer [5].
Let M be a local martingale with Mo = 0, Mc its continuous part and
(Mc) the increasing process associated with Mc. We put ΔM9 = Af. — M,_
and assume the condition AM. > — 1 throughout this note. Denote the
exponential martingale of M by ί?(Λf), that is, &(M)t = exp{ikft —
(l/2)<ikP>t + (log(l + x) — x)-μt}9 where μ is the integer valued random
measure associated with jumps of M. As is well-known, l?(Λf) is a
positive supermartingale with S?(Λf)o = 1 but it is not always a uniformly
integrable martingale. Girsanov [1] raised the problem of finding a
sufficient condition for the process i?(ΛΓ) to be a uniformly integrable
martingale. The purpose of this paper is to establish the following.

THEOREM. //, for some a with 0 <; a < 1 and a non-negative
constant C,

(1) (exp {aMs + ((1/2) - α)<M% - (1 - a)C(M°)T

+ (log (1 + x) - x + (1 - α)a?V(l + x)) - μs})s^b

is uniformly integrable, then $?(M) is a uniformly integrable martingale.
Here Sή> denotes the set of all bounded stopping times.

REMARK 1. The above theorem is an improvement of the results in
Novikov [6], [8], Kazamaki [2], and Lepingle and Memin [4]. For ex-
ample, our theorem implies the result in [8] (resp. [4]) in the case of
ΔM = 0 and a = 1/2 (resp. C = 0).

REMARK 2. Let M = M- «ikP> - C(Mc)ί/2) - (x2/(l + x))>μ and A{a) =
log ί?(Af) — (1 — a)M. If {exp (Aiα))}56 ̂  is uniformly integrable for some
a with 0 ^ a < 1, then so is {exp (Aψ)}s*&b for every β with a < β < 1.
Indeed, letting SeSΊ, we have


