Tôhoku Math. Journ. 35 (1983), 541-555.

BILINEAR FOURIER MULTIPLIERS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Kôzô Yabuta

(Received May 31, 1982)

Introduction. An *m*-linear operator $T_{\sigma}(f_1, f_2, \dots, f_m)$ is said to be an *m*-linear Fourier multiplier with symbol $\sigma(\xi_1, \xi_2, \dots, \xi_m)$, if it has the following form

$$T_{\sigma}(f_1, f_2, \cdots, f_m) = (2\pi)^{-nm} \int_{\mathbb{R}^{nm}} e^{ix \cdot (\xi_1 + \cdots + \xi_m)} \sigma(\xi_1, \cdots, \xi_m) \widehat{f_1}(\xi_1) \cdots \widehat{f_m}(\xi_m) d\xi_1 \cdots d\xi_m ,$$

where $x, \xi_1, \dots, \xi_m \in \mathbb{R}^n$, $x \cdot y = x_1 y_1 + \dots + x_n y_n$ and \hat{f} is the Fourier transform of f, i.e. $\hat{f}(\zeta) = \int_{\mathbb{R}^n} e^{-ix \cdot \zeta} f(x) dx$, which is denoted also by $\mathscr{F}f$. In [6] we showed the following: If $\sigma \in C^{2nm+1}(\mathbb{R}^{nm} \setminus \{0\})$ and $|\partial_{\xi}^{\alpha}\sigma(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|}, \ \xi \neq 0, \ |\alpha| \leq 2nm + 1$, then for $p_j \in [1, \infty]$ $(1 \leq j \leq m)$ and $0 \leq 1/p = 1/p_1 + \dots + 1/p_m \leq 1$ it holds that

$$(0.1) || T_{\sigma}(f_1, \cdots, f_m) ||_p \leq C(p_1, \cdots, p_m) || f_1 ||_{p_1} \cdots || f_m ||_{p_m},$$

 $(f_j \in \mathcal{S}, j = 1, \dots, m)$, where $||f_j||_{p_j} = ||f_j||_{H^1}$ and $f_j \in H_{00}^1$ if $p_j = 1$, and in case $p = \infty$ the norm on the left-hand side is the BMO norm, which is denoted by $||f||_*$. Here \mathcal{S} is the Schwartz class of smooth and rapidly decreasing functions, and H_{00}^1 is the space of all $f \in \mathcal{S}$ such that \hat{f} has compact support bounded away from the origin. $||f||_p$ is the usual $L^p(\mathbb{R}^n)$ norm $(1 \leq p \leq \infty)$. See [7], [5] or [6] for the definitions of H^p spaces and BMO.

We say that T_{σ} has Property (C) if the above inequalities (0.1) hold for all $1 \leq p_j \leq \infty$ and $0 \leq 1/p = 1/p_1 + \cdots + 1/p_m \leq 1$. In this note we try to relax the assumption for σ to obtain Property (C) in the case n = 1 and m = 2. That is, we deal with bilinear Fourier multipliers with non-smooth symbols. Our symbols have singularities on finite pieces of rays issuing from the origin. Our prototype is Calderón's commutator K_1 in Section 2. It has singularities on the rays $\{\theta = \pm \pi/2\}$ and $\{\theta = (1\pm 2)\pi/4\}$. In Section 1 we deal with non-homogeneous symbols.

Partly supported by the Grant-in-Aid for Scientific Research (C-56540060), the Ministry of Education, Science and Culture, Japan.