STABILITY OF A MECHANICAL SYSTEM WITH UNBOUNDED DISSIPATIVE FORCES

Satoru Murakami

(Received September 3, 1983)

In this article we shall be concerned with a mechanical system described by the Lagrangian equation

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}}-\frac{\partial T}{\partial q}=-\frac{\partial \Pi}{\partial q}-B(t, q) \dot{q}+G(t, q) \dot{q} \tag{1}
\end{equation*}
$$

with generalized coordinates $q \in R^{n}$ and generalized velocities $\dot{q} \in R^{n}$. Salvadori [5] gave sufficient conditions under which the equilibrium of (1) is asymptotically stable in the case where B and G are time-independent. Recently, Hatvani [2] gave the conditions of the (partial) asymptotic stability and instability for more general systems. To obtain a result of the asymptotic stability, he considered some familiar conditions and furthermore, the following:
(*) For any compact subset L of R^{n},

$$
\gamma_{L}(t):=\sup \{\|G(t, q)-B(t, q)\|: q \in L\} \in F,
$$

where F is the set of all measurable functions $\xi(t)=\xi_{1}(t)+\xi_{2}(t), \xi_{1}, \xi_{2}$: $[0, \infty) \rightarrow[0, \infty)$, such that ξ_{1} is bounded on $[0, \infty)$ and $\int_{0}^{\infty} \xi_{2}(t) d t<\infty$. If $B(t, q) \equiv t E$ (E is the unit matrix in $R^{n \times n}$) and $G(t, q) \equiv 0$, however, the condition (*) does not hold. In this article, by employing the manner developed in [3] we shall overcome this difficulty for the dissipation B which is unbounded. That is, we shall show that the equilibrium $q=$ $\dot{q}=0$ of (1) is weakly uniformly asymptotically stable under some familiar conditions and the following; for any bounded continuous function $\psi(s)$ on $[0, \infty)$ there exist a sequence of positive numbers $\left\{s_{n}\right\}$ and a positive constant $d, s_{n+1} \geqq s_{n}+d$, such that $\operatorname{tr} B(s, \psi(s)) \not \equiv 0$ on $\left[s_{n}, s_{n}+d\right]$ for all n and that

$$
\sum_{n=1}^{\infty}\left[\left[\int_{s_{n}}^{s_{n}+d} \operatorname{tr} B(s, \psi(s)) d s\right]^{-1}=\infty,\right.
$$

where $\operatorname{tr} B(s, \psi(s))$ denotes the trace of $B(s, \psi(s))$. Thus, our result is applicable to a mechanical system with unbounded B satisfying $0<\operatorname{tr} B \leqq$ $M t \cdot \log (1+t)+N, t \geqq 0$, for some positive constants M and N. In

