Tôhoku Math. Journ. 36 (1984), 401-406.

STABILITY OF A MECHANICAL SYSTEM WITH UNBOUNDED DISSIPATIVE FORCES

SATORU MURAKAMI

(Received September 3, 1983)

In this article we shall be concerned with a mechanical system described by the Lagrangian equation

(1)
$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = -\frac{\partial \Pi}{\partial q} - B(t, q)\dot{q} + G(t, q)\dot{q} ,$$

with generalized coordinates $q \in \mathbb{R}^n$ and generalized velocities $\dot{q} \in \mathbb{R}^n$. Salvadori [5] gave sufficient conditions under which the equilibrium of (1) is asymptotically stable in the case where B and G are time-independent. Recently, Hatvani [2] gave the conditions of the (partial) asymptotic stability and instability for more general systems. To obtain a result of the asymptotic stability, he considered some familiar conditions and furthermore, the following:

(*) For any compact subset L of
$$R^n$$
,
 $\gamma_L(t)$: = sup { $||G(t, q) - B(t, q)||$: $q \in L$ } $\in F$

where F is the set of all measurable functions $\xi(t) = \xi_1(t) + \xi_2(t)$, ξ_1, ξ_2 : $[0, \infty) \rightarrow [0, \infty)$, such that ξ_1 is bounded on $[0, \infty)$ and $\int_0^\infty \xi_2(t)dt < \infty$. If $B(t, q) \equiv tE$ (E is the unit matrix in $\mathbb{R}^{n \times n}$) and $G(t, q) \equiv 0$, however, the condition (*) does not hold. In this article, by employing the manner developed in [3] we shall overcome this difficulty for the dissipation Bwhich is unbounded. That is, we shall show that the equilibrium $q = \dot{q} = 0$ of (1) is weakly uniformly asymptotically stable under some familiar conditions and the following; for any bounded continuous function $\psi(s)$ on $[0, \infty)$ there exist a sequence of positive numbers $\{s_n\}$ and a positive constant d, $s_{n+1} \geq s_n + d$, such that tr $B(s, \psi(s)) \not\equiv 0$ on $[s_n, s_n + d]$ for all n and that

$$\sum_{n=1}^{\infty} \left[\int_{s_n}^{s_n+d} \mathrm{tr} \, B(s, \, \psi(s)) ds
ight]^{-1} = \, \infty$$
 ,

where tr $B(s, \psi(s))$ denotes the trace of $B(s, \psi(s))$. Thus, our result is applicable to a mechanical system with unbounded B satisfying $0 < \text{tr } B \leq Mt \cdot \log(1+t) + N$, $t \geq 0$, for some positive constants M and N. In