ON EXTREMAL QUASICONFORMAL MAPPINGS COMPATIBLE WITH A FUCHSIAN GROUP WITH A DILATATION BOUND

KEN-ICHI SAKAN

(Received December 23, 1983, revised June 1, 1984)

1. Introduction. Let U be the upper half-plane and let Γ be a Fuchsian group. That is, Γ is a discrete subgroup of the real Möbius group $PSL(2, \mathbf{R})$, possibly consisting of only the identity transformation of $PSL(2, \mathbf{R})$. Let $L_{\infty}(\Gamma)$ be the closed linear subspace of $L_{\infty}(U)$ consisting of those $\nu \in L_{\infty}(U)$ which satisfy

(1.1)
$$\nu(\gamma(w))\overline{\gamma}'(w)/\gamma'(w) = \nu(w)$$
 for every $\gamma \in \Gamma$.

We denote by $M(\Gamma)$ the open unit ball of $L_{\infty}(\Gamma)$. For ν in $M(\Gamma)$, we denote by $z = F_{\nu}(w)$ the uniquely determined automorphism of U which is a generalized solution in U of the Beltrami equation $F_{\overline{w}} = \nu F_w$ and which leaves 0, 1, ∞ fixed. The mapping F_{ν} is called the normalized quasiconformal automorphism of U with complex dilatation $\nu = \nu(w)$ (see Lehto and Virtanen [12, p. 185 and p. 194]). As is known, F_{ν} is extensible to a homeomorphism of the closure $\overline{U} = U \cup \hat{R}$ of U in the extended complex plane \hat{C} , which we denote by the same letter F_{ν} .

Let σ be a Γ -invariant closed subset of the extended real line \hat{R} , which contains 0, 1 and ∞ . Let E be a Γ -invariant measurable, possibly empty, subset of U such that the closure of E/Γ in $\{U \cup (\hat{R} \setminus \sigma)\}/\Gamma$ is a compact proper subset of $\{U \cup (\hat{R} \setminus \sigma)\}/\Gamma$. Let b(w) be a non-negative bounded measurable function on E, being automorphic for Γ and satisfying

(1.2)
$$0 \leq c_1 = \operatorname{ess\,sup}_{w \in F} b(w) < 1$$
.

Let $D = U \setminus E$. By the above property of E, we easily see that the set D/Γ has a positive measure. For ν in $M(\Gamma)$, we put

(1.3)
$$K(\nu|_D) = (1 + \|\nu|_D\|_{\infty})/(1 - \|\nu|_D\|_{\infty})$$

where $\|\nu|_D\|_{\infty}$ means the L_{∞} norm of the restriction $\nu|_D$ of ν to D. In the case E is empty, we use the notation $K(\nu)$ instead of $K(\nu|_D)$.

Suppose that μ is a prescribed element in $M(\Gamma)$ satisfying $|\mu(w)| \leq b(w)$ a.e. in *E*. We consider the class $M_{\mu} \equiv M_{\mu}(\Gamma, \sigma, E, b)$ consisting of those $\nu \in M(\Gamma)$ which satisfy the conditions $F_{\nu}|_{\sigma} = F_{\mu}|_{\sigma}$ and $|\nu(w)| \leq b(w)$ a.e. in *E*. We put