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1. Introduction. In this paper we shall study the growth of
meromorphic solutions of some algebraic differential equations with the
aid of the Nevanlinna theory of meromorphic functions (see [4], [6]). We
denote by M the set of meromorphic functions in the complex plane, by
E some subset of [0, oo) with meas£'< <χ> and by K some constant
which is not always the same. The term "meromorphic" will mean
meromorphic in the complex plane.

Let H be a differential polynomial of w, w', -",w{μ) (μ ^ 1) with
coefficients in M:

H = H(w, w\ , w{μ)) = Σ cλ(z)wgo(w')Ql (w{μ))gp ,
λ l

where cλ e M with cλ Φ 0 and where / is a finite set of multi-indices
λ = (q0, Qlf , qμ) of nonnegative integers q0, qlf , qμ. Let Qt(w) be a
polynomial in w with coefficients in M:

Qi = Qi(w) = Σ α<yw
y fan e M, i = 0,1, ••-,%).

Consider the differential equation (D.E., for short):

( 1 ) F(w, H) = Qn(w)Hn + + Qx{w)H + Q0(w) = 0 ,

where Qn(w) Φ 0 and F(w, H) is irreducible over M as a polynomial in
w and H. A meromorphic solution w = w(z) is said to be admissible if

T(r, f) = o(2TCr, w)) (r -• oo, r g # )

for all coefficients / = α<y, cλ in (1).
Eremenko [1] gave the following:
"Suppose that the D.E. (1) has an admissible solution. Then,
(i) mn = 0;
(ii) When H = wι"\

(2) md^(μ + l)(n - i) (i = 0, 1, , n) ."


