BEHAVIOR OF SOLUTIONS FOR THE LINEARIZED NAVIER-STOKES EQUATIONS WITH VANISHING VISCOSITY

KIYOKAZU NAKAGAWA

(Received January 17, 1986)

1. Introduction. Let Ω be a bounded domain in E_3 with smooth boundary $\partial \Omega$ and let T > 0 be fixed. For a vector function $v_{\nu} = (v_{\nu,1}, v_{\nu,2}, v_{\nu,3})$ and a scalar function p_{ν} representing the velocity of the fluid and the pressure we consider in $\Omega \times [0, T]$ an initial-boundary value problem for the linearized Navier-Stokes equation:

(1.1)
$$\begin{cases} D_t \boldsymbol{v}_{\nu} - \nu \Delta \boldsymbol{v}_{\nu} + \nabla p_{\nu} = \boldsymbol{f} ,\\ \operatorname{div} \boldsymbol{v}_{\nu} = 0 ,\\ \boldsymbol{v}_{\nu}|_{t=0} = \boldsymbol{a} , \quad \boldsymbol{v}|_{\partial \mathcal{Q}} = \boldsymbol{0} , \end{cases}$$

where a(x), f(x, t) are given vector functions and ν is the so-called viscosity coefficient.

The existence and uniqueness results for (1.1) are now well known (see, for instance, [1]); whereas the behavior of the solutions, as the viscosity coefficient ν tends to zero, is not yet fully understood, and we wish to study such a question in this note.

We first introduce our notation. Let $L^2(\Omega)$ be the Hilbert space of square integrable real functions on Ω and let $W^{k,2}(\Omega)$ be the Sobolev space of functions with square integrable derivatives up to the order k in $L^2(\Omega)$. For vector valued functions $\boldsymbol{v} = (v_1, v_2, v_3)$ the corresponding spaces are denoted by $L^2(\Omega)$ and $W^{k,2}(\Omega)$. The norms will be denoted by $\parallel \parallel_{L^2(\Omega)}$, $\parallel \parallel_{W^{k,2}(\Omega)}$ etc. Let $C_0^{\infty}(\Omega) = \{\boldsymbol{v} = (v_1, v_2, v_3); v_i \in C^{\infty}(\Omega), \operatorname{supp}(v_i) \subset \Omega, i = 1, 2, 3\}$ and $C_{0,\sigma}^{\infty}(\Omega) = \{\boldsymbol{v} \in C_0^{\infty}(\Omega); \operatorname{div} \boldsymbol{v} = 0\}$. We define $L^2_{\sigma}(\Omega)$ and $H(\Omega)$ as the closures of $C_{0,\sigma}^{\infty}(\Omega)$ in $L^2(\Omega)$ and $W^{1,2}(\Omega)$. The orthogonal projection from $L^2(\Omega)$ (resp. $L^2(\Omega \times (0, T)) = L^2(0, T; L^2(\Omega))$) onto $L^2_{\sigma}(\Omega)$ (resp. $L^2(0, T; L^2_{\sigma}(\Omega))$) will be denoted by P_{σ} .

We now assume in (1.1) that $\boldsymbol{a} \in \boldsymbol{H}(\Omega)$ and $\boldsymbol{f} \in \boldsymbol{L}^2(\Omega \times (0, T))$. Then as will be seen in the next section, we have the solution $(\boldsymbol{v}_{\nu}, p_{\nu})$, which as $\nu \to 0$ converges weakly in the Hilbert space $\boldsymbol{L}^2(\Omega \times (0, T)) \times L^2(\Omega \times (0, T))$ to the solution (\boldsymbol{v}_0, p_0) , given by