BEHAVIOR OF SOLUTIONS FOR THE LINEARIZED NAVIER-STOKES EQUATIONS WITH VANISHING VISCOSITY

Kiyokazu Nakagawa

(Received January 17, 1986)

1. Introduction. Let Ω be a bounded domain in E_{3} with smooth boundary $\partial \Omega$ and let $T>0$ be fixed. For a vector function $\boldsymbol{v}_{\nu}=$ $\left(v_{\nu, 1}, v_{\nu, 2}, v_{\nu, 3}\right)$ and a scalar function p_{ν} representing the velocity of the fluid and the pressure we consider in $\Omega \times[0, T]$ an initial-boundary value problem for the linearized Navier-Stokes equation:

$$
\left\{\begin{array}{l}
D_{t} \boldsymbol{v}_{\nu}-\nu \Delta \boldsymbol{v}_{\nu}+\nabla p_{\nu}=\boldsymbol{f}, \tag{1.1}\\
\operatorname{div} \boldsymbol{v}_{\nu}=0, \\
\left.\boldsymbol{v}_{\nu}\right|_{t=0}=\boldsymbol{a},\left.\quad \boldsymbol{v}\right|_{\partial \Omega}=\mathbf{0},
\end{array}\right.
$$

where $\boldsymbol{a}(x), \boldsymbol{f}(x, t)$ are given vector functions and ν is the so-called viscosity coefficient.

The existence and uniqueness results for (1.1) are now well known (see, for instance, [1]); whereas the behavior of the solutions, as the viscosity coefficient ν tends to zero, is not yet fully understood, and we wish to study such a question in this note.

We first introduce our notation. Let $L^{2}(\Omega)$ be the Hilbert space of square integrable real functions on Ω and let $W^{k, 2}(\Omega)$ be the Sobolev space of functions with square integrable derivatives up to the order k in $L^{2}(\Omega)$. For vector valued functions $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ the corresponding spaces are denoted by $L^{2}(\Omega)$ and $W^{k, 2}(\Omega)$. The norms will be denoted by $\left\|\|_{L^{2}(\Omega)}\right.$, $\|\quad\|_{W^{k, 2}(\Omega)}$ etc. Let $\boldsymbol{C}_{0}^{\infty}(\Omega)=\left\{\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right) ; v_{i} \in C^{\infty}(\Omega)\right.$, $\operatorname{supp}\left(v_{i}\right) \subset \Omega, i=$ $1,2,3\}$ and $\boldsymbol{C}_{0, a}^{\infty}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{C}_{0}^{\infty}(\Omega)\right.$; div $\left.\boldsymbol{v}=0\right\}$. We define $\boldsymbol{L}_{\sigma}^{2}(\Omega)$ and $\boldsymbol{H}(\Omega)$ as the closures of $\boldsymbol{C}_{0,0}^{\infty}(\Omega)$ in $\boldsymbol{L}^{2}(\Omega)$ and $\boldsymbol{W}^{1,2}(\Omega)$. The orthogonal projection from $\boldsymbol{L}^{2}(\Omega)\left(\operatorname{resp} . \boldsymbol{L}^{2}(\Omega \times(0, T))=L^{2}\left(0, T ; \boldsymbol{L}^{2}(\Omega)\right)\right)$ onto $\boldsymbol{L}_{\sigma}^{2}(\Omega)\left(\operatorname{resp} . L^{2}\left(0, T ; \boldsymbol{L}_{\sigma}^{2}(\Omega)\right)\right)$ will be denoted by \boldsymbol{P}_{σ}.

We now assume in (1.1) that $\boldsymbol{a} \in \boldsymbol{H}(\Omega)$ and $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega \times(0, T))$. Then as will be seen in the next section, we have the solution $\left(\boldsymbol{v}_{\nu}, p_{\nu}\right)$, which as $\nu \rightarrow 0$ converges weakly in the Hilbert space $\boldsymbol{L}^{2}(\Omega \times(0, T)) \times L^{2}(\Omega \times(0, T))$ to the solution ($\boldsymbol{v}_{0}, p_{0}$), given by

