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0. Introduction. A differentiable manifold is said to be contact if it
admits a linear functional / on the tangent bundle satisfying /Λ WY~ι ^ 0.
The investigation of this as an intrinsic condition has received consider-
able study, (see [1]). As a real hypersurface of a complex space form is
almost contact, it is natural to ask: when is a real hypersurface of a
complex space form extrinsically contact?

Such investigations have been carried out successfully for real hyper-
surfaces of complex Euclidean spaces, [6], and of complex projective space,
[4], but until now not for real hyper surf aces of complex hyperbolic space.
In this study, contact hypersurfaces of a complex hyperbolic space are
classified using the congruence results of [7] in terms of the examples
constructed in [7]. In brief: complete connected contact hypersurfaces
of CH\—4), n ^ 3, are shown to be congruent to geodesic hyperspheres,
horospheres or tubes of positive radii around totally geodesic ^-dimensional
real hyperbolic space forms imbedded in CHn{ — 4).

Along the way, a related condition, originally investigated in [5], is
taken care of similarly: a complete connected real hypersurface of CfiΓ7^ —4)
whose induced almost contact structure commutes with its second funda-
mental form is congruent to a horosphere or a tube of radius r > 0
around a totally geodesic CHP(—4), 0 <* p <; n — 1.
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1. Real hypersurfaces of CHn(-4). Let CiTn(-4), n ^ 2, denote a
complex hyperbolic space with the Bergman metric tensor, i.e., a complex
space form of constant holomorphic sectional curvature —4. Let M2n~ι

be a real hypersurface of Cff", V and V be the metric connections on M
and CHn, respectively, so that the Gauss and Weingarten formulae can


