A REMARK ON THE HYPERBOLIC COLLAR LEMMA

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

HARUSHI FURUSAWA

(Received November 25, 1985)

1. Preliminaries. Let G be a discrete subgroup of PSL(2, C) acting on $H^3 = \{z + uj; z \in C, u > 0\}$, the upper half space model of the hyperbolic space. If $X \in G - \{id.\}$ is not a parabolic element, then we denote by g_x the geodesic in H^3 joining the fixed points of X on the boundary of H^3 . For a positive number k, we define a tubular neighborhood about g_x as the set

$$N_k(X) = \{x \in H^{\mathfrak{z}}; \, d(x, \, g_X) \leq k\}$$
 ,

where d is the hyperbolic distance. Let G_X be the subgroup of G which leaves g_X invariant. We call $N_k(X)$ a collar for X in G, if $T(N_k(X)) \cap$ $N_k(X) = \emptyset$ for all $T \in G - G_X$ and $T(N_k(X)) = N_k(X)$ for all $T \in G_X$. In this case, the number k is called the width of the collar $N_k(X)$.

The first purpose of this note is to prove the following theorem, the so-called collar lemma.

THEOREM. Let $G \subset PSL(2, \mathbb{C})$ be a non-elementary discrete group.

(i) Suppose that $X \in G$ satisfies $0 < |\operatorname{trace}^2 X - 4| = s < s_0 = 2(-1 + \sqrt{2})$. Then g_X has a collar $N_{k(s)}(X)$, where

(1)
$$\sinh^2 k(s) = s^{-1}(1-s)^{1/2} - 1/2$$
.

(ii) Let X and Y be in G and suppose that X and Y generate a non-elementary group. If $0 < |\operatorname{trace}^2 X - 4|$ and $|\operatorname{trace}^2 Y - 4| < 2(-1 + \sqrt{2})$, then the collars $N_{k(s)}(X)$ for X and $N_{k(s')}(Y)$ for Y are disjoint, where $s = |\operatorname{trace}^2 X - 4|$, $s' = |\operatorname{trace}^2 Y - 4|$ and k is the function defined by (1).

Brooks and Matelski [2] proved the above theorem for the constant $s_0 = 1/2$ and for the function k defined by $\sinh^2 k(s) = s^{-1} - 3/2$. Gallo [3] also obtained the theorem for the constant $s_0 = (\sqrt{41} - 5)/2$ and for k defined by $\sinh^2 k(s) = s^{-1} - (s+3)/2$. The constant s_0 and the function k in the Theorem are better than those in [2] and [3].

Sections 2 through 4 are devoted to preliminary discussions for the

Partly supported by the Grant-in Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.