THE EXPONENT OF CONVERGENCE OF POINCARÉ SERIES ASSOCIATED WITH SOME DISCONTINUOUS GROUPS

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Masami Nakada

(Received February 24, 1987)

1. Introduction. Let \boldsymbol{R}^{n+1} be the ($n+1$)-dimensional Euclidean space ($n \geqq 1$). Each point of R^{n+1} is denoted by a column vector $v={ }^{t}\left(v_{1}, v_{2}, \cdots\right.$, $\left.v_{n+1}\right)$, where t denotes the transpose. We put $|v|=\left\{\sum_{i=1}^{n+1}\left(v_{i}\right)^{2}\right\}^{1 / 2}$ and $x_{n+1}(v)=v_{n+1}$. Let $\boldsymbol{B}^{n+1}=\left\{v \in \boldsymbol{R}^{n+1}:|v|<1\right\}$ and $\boldsymbol{H}^{n+1}=\left\{v \in \boldsymbol{R}^{n+1}: x_{n+1}(v)>0\right\}$ be the open unit ball and the upper half space in \boldsymbol{R}^{n+1}, respectively. We denote by $S(x)$ the n-sphere in R^{n+1} with center at x and radius 1 .

A Möbius transformation of $\boldsymbol{R}^{n+1} \cup\{\infty\}$ is, by definition, a composite of a finite number of inversions in $\boldsymbol{R}^{n+1} \cup\{\infty\}$ with respect to n-spheres or n-planes. Let Möb be the group of all the Möbius transformations of $\boldsymbol{R}^{n+1} \cup\{\infty\}$. We denote by $\left|\gamma^{\prime}(x)\right|$ the $(n+1)$-th root of the absolute value of the determinant of the Jacobian matrix of $\gamma \in$ Möb at $x \in \boldsymbol{R}^{n+1} \backslash\left\{\gamma^{-1}(\infty)\right\}$.

An element $\gamma \in \mathrm{Möb}$ with a fixed point at ∞ is of the form $\gamma(x)=$ $\lambda A x+v$ for some $\lambda>0, A \in O(n+1)$ and $v \in \boldsymbol{R}^{n+1}$, where $O(n+1)$ is the group of orthogonal matrices of degree $n+1$ (see [1, p. 20]). Next assume that $\gamma(\infty) \neq \infty$. Then, for the inversion σ with respect to $S\left(\gamma^{-1}(\infty)\right)$, we have $\gamma \circ \sigma(\infty)=\infty$ so that $\gamma \circ \sigma(x)=\lambda A x+v$. Hence $\gamma(x)=\lambda A \sigma(x)+v$. Therefore $\left|\gamma^{\prime}(x)\right|=\lambda /\left|x-\gamma^{-1}(\infty)\right|^{2}$ since $\left|\sigma^{\prime}(x)\right|=1 /\left|x-\gamma^{-1}(\infty)\right|^{2}$. Let the center and the radius of the n-sphere $\left\{x \in \boldsymbol{R}^{n+1}:\left|\gamma^{\prime}(x)\right|=1\right\}$ be $\alpha(\gamma)$ and $\rho(\gamma)$, respectively. Then we have $\alpha(\gamma)=\gamma^{-1}(\infty)$ and $\rho(\gamma)^{2}=\lambda$ so that

$$
\begin{equation*}
\left|\gamma^{\prime}(x)\right|=\rho(\gamma)^{2} /|x-\alpha(\gamma)|^{2} . \tag{1}
\end{equation*}
$$

Further, let the interior and the exterior of the n-sphere be $I(\gamma)$ and $E(\gamma)$, respectively. Then, as in [1, p. 30],

$$
\begin{equation*}
\gamma(E(\gamma))=I\left(\gamma^{-1}\right), \quad \gamma(I(\gamma))=E\left(\gamma^{-1}\right) . \tag{2}
\end{equation*}
$$

Let $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ be the subgroup of Möb whose elements map \boldsymbol{B}^{n+1} onto itself. A subgroup Γ of $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ is said to be discontinuous if the orbit $\{\gamma(o)\}_{\gamma \in \Gamma}$ of the origin $o \in \boldsymbol{B}^{n+1}$ under Γ has no accumulation points in \boldsymbol{B}^{n+1}. Hence, for a discontinuous subgroup Γ, the set $\Lambda(\Gamma)$ of accumulation points of $\{\gamma(o)\}_{r \in \Gamma}$ is contained in ∂B^{n+1}. We call $\Lambda(\Gamma)$ the limit set of Γ. Let $\delta(\Gamma)$

