SPHERICAL FUNCTIONS OF HERMITIAN AND SYMMETRIC FORMS III

Yumiko Hironaka

(Received July 1, 1987)

Introduction. In the previous papers [2] and [3], we have introduced and studied spherical functions and a spherical transform on the space of nondegenerate hermitian, or symmetric, matrices over a \mathfrak{p}-adic number field. In [2], we have shown the injectivity of the spherical transform, and in [3] we have closely studied the case of matrices of size 2 . In this paper, making use of the results in [3], we shall show the functional equations for spherical functions and determine their possible poles.

Let k be a \mathfrak{B}-adic number field with \mathfrak{P} not lying over $2, \mathcal{O}$ the ring of integers of k and Π a prime element of k. Let X be the space of nondegenerate symmetric matrices of size n with entries in k. Then $K=G L_{n}(\mathcal{O})$ acts on X by $k \cdot x=k x^{t} k, k \in K, x \in X$. For $x \in X$, a character $\chi=\left(\chi_{1}, \cdots, \chi_{n}\right)$ of $\left(k^{*} / k^{* 2}\right)^{n}$ and $s=\left(s_{1}, \cdots, s_{n}\right) \in \boldsymbol{C}^{n}$, consider the following integral:
(*)

$$
L(x ; \chi ; s)=\int_{K^{\prime}} \prod_{i=1}^{n}\left|d_{i}(k \cdot x)\right|^{s_{i}} \chi_{i}\left(d_{i}(k \cdot x)\right) d k
$$

where $d k$ is the Haar measure on K normalized by $\int_{K} d k=1, d_{i}(k \cdot x)$ is the determinant of the upper left i by i block of $k \cdot x$, and $K^{\prime}=$ $\left\{k \in K: \prod_{i=1}^{n} d_{i}(k \cdot x) \neq 0\right\}$.

The right hand side of (*) is absolutely convergent for $\operatorname{Re}\left(s_{1}\right), \cdots$, $\operatorname{Re}\left(s_{n-1}\right) \geqq 0$, and has an analytic continuation to a rational function in $q^{s_{1}}, \cdots, q^{\boldsymbol{o}_{n}}$ (cf. [1]). Thus we may regard $L(x ; \chi ; s)$ as an element in $C^{\infty}(K \backslash X)$, the space of all K-invariant complex-valued functions on X. We call $L(x ; \chi ; s)$ a spherical function on X.

We introduce a new variable $z=\left(z_{1}, \cdots, z_{n}\right)$ which is related to s as follows:

$$
\left\{\begin{array}{l}
s_{i}=-z_{i}+z_{i+1}-\frac{1}{2} \quad(1 \leqq i \leqq n-1) \\
s_{n}=-z_{n}+\frac{n-1}{4}
\end{array}\right.
$$

[^0]
[^0]: Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

