LINEAR DIFFERENTIAL EQUATIONS MODELED AFTER HYPERQUADRICS

Dedicated to Professor Ichiro Satake on his sixtieth birthday

TAKESHI SASAKI AND MASAAKI YOSHIDA

(Received March 3, 1988)

0. Introduction. In this paper, we study systems of linear partial differential equations in $n \ge 3$ variables of rank (= the dimension of the solution space) n+2. The case n=2 is treated in [SY1] and [SY2].

Here we would like to mention our motivation. Let D be the symmetric domain of type IV of dimension $n \ (\ge 3)$, Γ be a transformation group acting properly discontinuously on D, X be a quotient variety of D under Γ naturally equipped with the structure of orbifold, π be the projection of D onto X and finally let φ be the inverse map $\pi^{-1}: X \to D$, which is called the *developing map of the orbifold* X. We think there should be a system of linear differential equations (E) defined on X such that the solution of the system gives rise to the map φ . It is called the *uniformizing differential equation of the orbifold* X. Since D can be thought of as a part of a non-degenerate quadric hypersurface Q in P^{n+1} and since we have the following inclusion relations

$$\operatorname{Aut}(D) \subset \operatorname{Aut}(Q) \subset \operatorname{Aut}(P^{n+1}) \cong PGL(n+2)$$

of the groups of complex analytic automorphisms, the system (E) must be of rank n+2 and the mapping defined on X by the ratio of n+2 linearly independent solutions of (E) has its image in the hyperquadric Q. In this way we encounter equations in n variables of rank n+2. Making a linear change of independent variables $x=(x^1, \dots, x^n)$ if necessary, we may assume that any system in n variables of rank n+2 with the unknown w has the form

(EQ)
$$\frac{\partial^2 w}{\partial x^i \partial x^j} = g_{ij} \frac{\partial^2 w}{\partial x^1 \partial x^n} + \sum_{k=1}^n A^k_{ij} \frac{\partial w}{\partial x^k} + A^0_{ij} w \qquad (1 \le i, j \le n)$$

where

$$g_{ij}\!=\!g_{ji},\; A_{ij}^k\!=\!A_{ji}^k,\; A_{ij}^0\!=\!A_{ji}^0,\; g_{1n}\!=\!1,\; A_{1n}^k\!=\!A_{1n}^0\!=\!0\;.$$

This system is the key to connecting the theory of conformal connections, the projective

This work was partially carried out during the stay of the first author in 86/87 and the second author in 86 at the MPI für Mathematik, to which they are greateful.