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0. Introduction. In this paper, we study systems of linear partial differential

equations in n ( ^ 3) variables of rank ( = the dimension of the solution space) n + 2. The

case n = 2 is treated in [SY1] and [SY2].

Here we would like to mention our motivation. Let D be the symmetric domain of

type IV of dimension n ( ^ 3), Γ be a transformation group acting properly discon-

tinuously on D, X be a quotient variety of D under Γ naturally equipped with the

structure of orbifold, π be the projection of D onto X and finally let φ be the inverse map

π " 1 : X->D, which is called the developing map of the orbifold X. We think there should

be a system of linear differential equations (E) defined on X such that the solution of the

system gives rise to the map φ. It is called the uniformizing differential equation of the

orbifold X. Since D can be thought of as a part of a non-degenerate quadric hypersurface

Q in Pn + ί and since we have the following inclusion relations

Aut(D) c Aut(β) c Aut(P" + 1)^ PGL(n + 2)

of the groups of complex analytic automorphisms, the system (E) must be of rank n + 2

and the mapping defined on X by the ratio of n + 2 linearly independent solutions of (E)

has its image in the hyperquadric Q. In this way we encounter equations in n variables of

rank n + 2. Making a linear change of independent variables x = (x1, , xn) if necessary,

we may assume that any system in n variables of rank n + 2 with the unknown w has the

form

d2w d2w ™ , dw

where

This system is the key to connecting the theory of conformal connections, the projective
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