CLASS NUMBERS OF POSITIVE DEFINITE BINARY AND TERNARY UNIMODULAR HERMITIAN FORMS

KI-ICHIRO HASHIMOTO AND HARUTAKA KOSEKI

(Received December 10, 1986)

CONTENTS

	Introduction
1.	Characteristic polynomials of torsion elements
2.	n=2: Quaternion algebras and nonmaximal orders
3.	$n = 3$: Contribution from $f_2(X)$
4.	$n = 3$: Contributions from $f_3(X)$, $f_{41}(X)$, and $f_{42}(X)$
5.	n=3: Explicit formulas (main results)
6.	Dimension of automorphic forms
	References

0. Introduction.

0.1. This paper is a continuation of [32]. Let (V, H) be a positive definite Hermitian space over an imaginary quadratic field K, and let \mathscr{L} be a genus of \mathscr{O} -lattices in V with respect to the unitary group $\mathbb{G} := \mathbb{U}(V, H)$, where \mathscr{O} is the ring of integers of K. As we saw in [32], the class number $h(\mathscr{L})$ of \mathscr{L} is expressed as a finite sum:

(0.1)
$$\boldsymbol{h}(\mathscr{L}) = \sum_{f \in F} \sum_{[g]_{\boldsymbol{\varrho}}} \boldsymbol{h}([g]_{\boldsymbol{\varrho}}; \mathscr{L}),$$

where in the first sum f runs through the set of characteristic polynomials of the torsion elements of G; and the second sum is taken over the *locally integral G*-conjugacy classes $[g]_{o} = [g]_{G}$ which belong to f, and the invariants $h([g]_{o}; \mathcal{L})$ are given by

(0.2)
$$\boldsymbol{h}([g)_{\boldsymbol{Q}}; \mathscr{L}) = \sum_{\mathscr{L}(\boldsymbol{V})} \mathbb{M}(\boldsymbol{V}) \prod_{p} c_{p}(g, U_{p}, V_{p}),$$

with $\mathbb{M}(V)$ the mass of an idélic arithmetic subgroup V of the centralizer $G(g)_{\mathbb{A}}$ of g in $G_{\mathbb{A}}$. See [32] for a more precise definition. We note among others that the masses were evaluated there.

In the present paper, we shall carry out the computations of the local factors $c_p(g, U_p, V_p)$, and derive from (0.1), (0.2) explicit formulas for the class numbers of genera consisting of *unimodular* Hermitian lattices, of ranks **two** and **three**.

0.2. To state our main results, let $K = Q(\sqrt{-m})$ (m > 0, square free) be an imaginary quadratic field, and let \mathcal{O} be its ring of integers. Let V be a vector space of dimension n over K, which is equipped with a positive definite Hermitian form H: