CRITERIA FOR QUASI-SYMMETRICITY AND THE HOLOMORPHIC SECTIONAL CURVATURE OF A HOMOGENEOUS BOUNDED DOMAIN

Dedicated to Professor Ichiro Satake on his sixtieth birthday

Kazuo Azukawa

(Received April 11, 1988, revised November 9, 1988)

Introduction. It is well-known that to every biholomorphic equivalence class of homogeneous bounded domains in C^{n}, there naturally corresponds bijectively an isomorphism class of normal j-algebras of dimension $2 n$. On the base of normal j-algebras, curvature properties of the Bergman metric on a homogeneous bounded domain were discussed in [4], [5], [6], [7], [8], [9].

In this paper we first define the notion of a "strong j-ideal" of a normal j-algebra such that the decomposition of a normal j-algebra into simple strong j-ideals is precisely related to the decomposition of the corresponding homogeneous bounded domain into irreducible ones as Riemannian manifolds with respect to the Bergman metrics (Lemma 1.4).

Let (\mathfrak{g}, j) be a normal j-algebra with $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$ and \mathfrak{a} be the orthogonal complement of n. Let

$$
\mathfrak{g}=\sum \mathbf{n}_{a b}+\sum j \mathbf{n}_{a b}+\sum \mathbf{n}_{a \infty}
$$

be the root space decomposition of \mathfrak{g} with respect to the adjoint representation of \mathfrak{a} on n . Let $\mathscr{L}=\sum \mathrm{n}_{a b}, \mathscr{U}=\sum \mathrm{n}_{a \infty}$. For $x \in \mathscr{L}$, we define two endomorphisms of \mathscr{L} by $A(x)=2^{-1}\left(\left(\operatorname{ad}_{\mathscr{L}} j x\right)+\left(\operatorname{ad}_{\mathscr{L}} j x\right)^{t}\right), D(x)=2^{-1}\left(\left(\operatorname{ad}_{\mathscr{L}} j x\right)-\left(\operatorname{ad}_{\mathscr{L}} j x\right)^{t}\right)$, and an endomorphism of \mathscr{U} by $\varphi(x)=\left(\operatorname{ad}_{\mathscr{U}} j x\right)+\left(\mathrm{ad}_{\mathscr{U}} j x\right)^{t}$. For $x, y \in \mathscr{L}$, let $x \cdot y=A(x) y$. Then, (\mathscr{L}, \cdot) is a commutative distributive algebra over \boldsymbol{R}. If (\mathscr{L}, \cdot) is a Jordan algebra, the corresponding homogeneous bounded domain is said to be quasi-symmetric in the sense of Satake [16] (cf. [11]). We consider the following conditions on (\mathfrak{g}, j):
(J) (\mathscr{L}, \cdot) is a Jordan algebra.
(D) For every $x \in \mathscr{L}, D(x)$ is a derivation of ($\mathscr{L}, \cdot)$.
(M) For each simple strong j-ideal $\tilde{\mathfrak{g}}$ of (\mathfrak{g}, j), all root spaces $\mathfrak{n}_{a b} \subset \tilde{\mathfrak{g}}(a<b)$ are of the same dimension and so are all $\mathfrak{n}_{a \infty} \subset \tilde{\mathfrak{g}}$.
(A) $2 \varphi(x \cdot y)=\varphi(x) \circ \varphi(y)+\varphi(y) \circ \varphi(x)$ on \mathscr{U} for all $x, y \in \mathscr{L}$.

The main purpose of the present paper is to show that (J), (D), and (M) are mutually equivalent, that (M) implies (A), and that if (\mathfrak{g}, j) is simple with $\mathscr{U} \neq\{0\}$, then (A) implies

