T6éhoku Math. J.
41 (1989), 349-357
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1. Introduction. Let I' be a Fuchsian group. Denote by A(I') and Q(I) its limit
set and region of discontinuity, respectively. Then I is said to be of the first kind if
(I) is not connected. If all elements of I'\\{1} are hyperbolic transformations, I' is
said to be purely hyperbolic. Let w be a quasiconformal automorphism of the Riemann
sphere € which is compatible with I', that is, woyow™! is a Mobius transformation for
each yeI". Then wI'w ™! is a Kleinian group and is called a quasiconformal deformation
of I'. The limit set A(wl'w~!) coincides with w(A(I")), which is a quasicircle when I is
of the first kind. For two Jordan curves J, and J, in the finite complex plane C we
define the Fréchet distance [J,, J,] as inf max{| z,(f) — z,(t) |; 0 £ ¢ < 1}, where the infimum
is taken over all possible parametrizations z(t) of J, (k=1, 2).

In Chu [1] the following theorem is used as.a key lemma to prove a theorem on
the outradii of the Teichmiiller spaces of finitely generated purely hyperbolic Fuchsian
groups of the first kind.

THEOREM A. Let J be a rectifiable Jordan curve in C and let 6>0. Then there
exists a quasiconformal deformation G of a finitely generated purely hyperbolic Fuchsian
group of the first kind so that [A(G), J]1<é.

Theorem A is proved by means of a theorem of Maskit on finitely generated
Kleinian groups (Maskit [4, Theorem 2]). The assumption of the rectifiability of J can
be removed (see Lemma 4.1). In this note we prove the following theorem, which is an
analogue of Theorem A.

THEOREM B. Let J be a Jordan curve in C and let §>0. Then there exists a
quasiconformal deformation G of an infinitely generated Fuchsian group of the first kind
so that [A(G), J] <.

We prove Theorem B by constructing a group G explicitly. In §2 we prove two
lemmas which are used in §4. In §3 we construct a quasiconformal mapping used in
§5. In §4 we construct an infinitely generated Kleinian group G whose limit set A(G) is
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