CERTAIN ASPECTS OF TWISTED LINEAR ACTIONS, II

Dedicated to Professor Akio Hattori on his 60th birthday

FUICHI UChida*)

(Received May 17, 1988)
0. Introduction. In the previous papers [1], [2], we have introduced the concept of a twisted linear action which is an analytic action of a non-compact Lie group on a sphere.

We have shown that there are uncountably many topologically distinct analytic actions of $\boldsymbol{S L}(n, \boldsymbol{R})$ on an $(n k-1)$-sphere for each $n>k \geqq 2$. Furthermore, we have shown that there are uncountably many C^{1}-differentiably distinct but topologically equivalent analytic actions of $\boldsymbol{S L}(n, \boldsymbol{R})$ on a k-sphere for each $k \geqq n \geqq 2$.

In this paper, we shall show other aspects of twisted linear actions. In particular, we shall show that there are uncountably many C^{2}-differentiably distinct but C^{1}-differentiably equivalent analytic actions of \boldsymbol{R}^{n} on an n-sphere for each n.

1. Twisted linear actions. Here we recall the definition of twisted linear actions. Throughout this paper, a matrix means only the one with real coefficients.
1.1. Let $\boldsymbol{u}=\left(u_{i}\right)$ and $\boldsymbol{v}=\left(v_{i}\right)$ be column vectors in \boldsymbol{R}^{n}. As usual, we define their inner product by $\boldsymbol{u} \cdot \boldsymbol{v}=\sum_{i} u_{i} v_{i}$ and the length of \boldsymbol{u} by $\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$. Let $M=\left(m_{i j}\right)$ be a square matrix of degree n. We say that M satisfies the condition (T) if the quadratic form

$$
\boldsymbol{x} \cdot M \boldsymbol{x}=\sum_{i, j} m_{i j} x_{i} x_{j}
$$

is positive definite. It is easy to see that M satisfies (T) if and only if

$$
\frac{d}{d t}\|\exp (t M) \boldsymbol{x}\|>0 \quad \text { for each } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n}=\boldsymbol{R}^{n}-\{\mathbf{0}\}, \quad t \in \boldsymbol{R}
$$

If M satisfies (T^{\prime}), then

$$
\lim _{t \rightarrow+\infty}\|\exp (t M) x\|=+\infty \quad \text { and } \quad \lim _{t \rightarrow-\infty}\|\exp (t M) x\|=0
$$

for each $\boldsymbol{x} \in \boldsymbol{R}_{0}^{n}$, and hence there exists a unique real valued analytic function τ on $\boldsymbol{R}_{0}^{\boldsymbol{n}}$

[^0]
[^0]: ${ }^{*)}$ Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

