Tôhoku Math. J. 42 (1990), 205–216

BUBBLING OUT OF EINSTEIN MANIFOLDS

Shigetoshi Bando

(Received March 4, 1989)

In [1], [8], and [4] the following compactness theorem of the space of Einstein metrics is obtained in the spirit of Gromov theory.

THEOREM A. Let (X_i, g_i) be a sequence of n-dimensional $(n \ge 4)$ smooth manifolds and Einstein metrics on them with uniformly bounded Einstein constants $\{e_i\}$ satisfying

diam
$$(X_i, g_i) \le D$$
, vol $(X_i, g_i) \ge V$ and $\int_{X_i} |R_{g_i}|^{n/2} dV_i \le R$

for some positive constants D, V and R, where we denote the curvature tensor of a metric g by R_g . Then there exist a subsequence $\{j\} \subset \{i\}$ and a compact Einstein orbifold (X_{∞}, g_{∞}) with a finite set of singular points $S = \{x_1, x_2, \dots, x_s\} \subset X_{\infty}$ (possibly empty) for which the following statements hold:

(1) (X_i, g_i) converges to (X_{∞}, g_{∞}) in the Hausdorff distance.

(2) There exists an into diffeomorphism $F_j: X_{\infty} \setminus S \to X_j$ for each j such that $F_j^*g_j$ converges to g_{∞} in the C^{∞} -topology on $X_{\infty} \setminus S$.

(3) For every $x_a \in S$ $(a = 1, 2, \dots, s)$ and j, there exist $x_{a,j} \in X_j$ and a positive number r_j such that

- (3.a) $B(x_{a,j}; \delta)$ converges to $B(x_a; \delta)$ in the Hausdorff distance for all $\delta > 0$.
- (3.b) $\lim_{j\to\infty}r_j=0.$
- (3.c) $((X_j, r_j^{-2}g_j), x_{a,j})$ converges to $((M_a, h_a), x_{a,\infty})$ in the pointed Hausdorff distance, where (M_a, h_a) is a complete, non-compact, Ricci-flat, non-flat n-manifold which is ALE, of order n-1 in general, of order n if (M_a, h_a) is Kähler or n=4.
- (3.d) There exists an into diffeomorphism $G_j: M_a \to X_j$ such that $G_j^*(r_j^{-2}g_j)$ converges to h_a in the C^{∞} -topology on M_a .
- (4) It holds that

$$\lim_{j\to\infty}\int_{X_j}|R_{g_j}|^{n/2}dV_j\geq\int_{X_{\infty}}|R_{g_{\infty}}|^{n/2}dV_{\infty}+\sum_a\int_{M_a}|R_{h_a}|^{n/2}dV_{h_a}.$$

Moreover if (X_i, g_i) are Kähler, then (X_{∞}, g_{∞}) and (M_a, h_a) are also Kähler.

Here we call a smooth *n*-dimensional complete Riemannian orbifold (X, g) asymptotically locally Euclidean (ALE, for short) of order $\tau > 0$, if there exists a compact subset $K \subset X$ such that $X \setminus K$ has coordinates at infinity; namely there are R > 0, $0 < \alpha < 1$, a finite subgroup $\Gamma \subset O(n)$ acting freely on $\mathbb{R}^n \setminus B(0; R)$, and a C^{∞} -diffeomorphism