INVARIANT HYPERFUNCTIONS ON REGULAR PREHOMOGENEOUS VECTOR SPACES OF COMMUTATIVE PARABOLIC TYPE

MASAKAZU MURO*

(Received February 1, 1989, revised December 20, 1989)

Abstract. Let (G_R^+, ρ, V) be a regular irreducible prehomogeneous vector space defined over the real field R. We denote by P(x) its irreducible relatively invariant polynomial. Let $V_1 \cup V_2 \cup \cdots \cup V_l$ be the connected component decomposition of the set $V - \{x \in V; P(x) = 0\}$. It is conjectured by [Mr4] that any relatively invariant hyperfunction on V is written as a linear combination of the hyperfunctions $|P(x)|_s^s$, where $|P(x)|_s^s$ is the complex power of $|P(x)|^s$ supported on V_i . In this paper the author gives a proof of this conjecture when (G_R^+, ρ, V) is a real prehomogeneous vector space of commutative parabolic type. Our proof is based on microlocal analysis of invariant hyperfunctions on prehomogeneous vector spaces.

CONTENTS

Int	ntroduction	164
1.	Formulation of the main problem	165
	1.1 Preliminary conditions and some definitions	165
	1.2 Main problem	166
2.	Regular prehomogeneous vector spaces of commutative parabolic type	. 167
	2.1 Prehomogeneous vector spaces of parabolic type	. 167
	2.2 Holonomic systems \mathfrak{M}_s for prehomogeneous vector spaces of	
	commutative parabolic type	. 169
3.	Holonomic systems on the real locus and its solutions	. 172
	3.1 Solutions with a holomorphic parameter $s \in C$. 172
	3.2 Real holonomy diagrams	. 173
	3.3 Relations for microfunction solutions	. 175
4.		
	parabolic type	. 178
	4.1 The list of real forms	. 178
	4.2 Real holonomy diagrams of \mathfrak{M}_s	. 179
5.	. Proof of the main theorem	. 185
	5.1 Critical points for $P(x)^s$. 185
	5.2 Proof of the main theorem at non-critical points	. 186
	5.3 Proof of the main theorem at critical points	. 188
	5.4 Conclusion and remark	. 191

^{*} Partially supported by the Grants-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

Key words: prehomogeneous vector space, invariant, hyperfunction, micro-local analysis.