GALOIS EXTENSIONS OF ALGEBRAIC FUNCTION FIELDS

Dedicated to Professor Ichiro Satake on his sixtieth birthday

HISASHI KOJIMA

(Received December 27, 1988, revised October 23, 1989)

Introduction. Let K be an algebraic function field of one variable of genus g over the complex number field C. Let $\mathfrak{P}_1, \dots, \mathfrak{P}_n$ and m_1, \dots, m_n be any given distinct prime divisors of K over C and any given elements of $N \cup \{\infty\}$ satisfying $2g-2+\sum_{i=1}^n (1-1/m_i)>0$, respectively, where N means the set of natural numbers. Set $\Delta=\{i \mid 1 \leq i \leq n, m_i=\infty\}$ and $\Delta'=\{1,2,\dots,n\}-\Delta$. We consider all Galois extensions L of K in a fixed algebraic closure \overline{K} of K such that the divisors $\mathfrak{D}(L/K)'$ divide $\sum_{i=1}^n (m_i-1)\mathfrak{P}_i$ and that the ramification indices $e_{\mathfrak{P}_i}$ $(1 \leq i \leq n)$ of divisors of L over \mathfrak{P}_i divide m_i , where $\mathfrak{D}(L/K)'=\mathfrak{D}(L/K)-\sum_{i\in A}v_{\mathfrak{P}_i}\mathfrak{P}_i$ and $\mathfrak{D}(L/K)=\sum_{\mathfrak{P}}v_{\mathfrak{P}}\mathfrak{P}$ is the ramification divisor of L over K. It is well known that the Galois group of the composite field of all these Galois extensions of K is isomorphic to the profinite completion of a Fuchsian group Γ_0 with signature $(m_1,\dots,m_n:g)$ (cf. Eichler [2] and Weil [9]). We fix an odd prime number p and denote by F_n the finite field with p elements.

In this paper, we shall study the number of Galois extensions L (resp. \tilde{L}) of K in \bar{K} with $SL_2(F_p)$ (resp. $PSL_2(F_p)$) as their Galois groups such that $\mathfrak{D}(L/K)'|\sum_{i=1}^n (m_i-1)\mathfrak{P}_i, e_{\mathfrak{P}_i}|m_i \ (i\in\Delta')$ and $e_{\mathfrak{P}_1}=m_1$. This number is independent of $\mathfrak{P}_1,\cdots,\mathfrak{P}_n$. So we denote by $N(m_1,\cdots,m_n;g)$ (resp. $\tilde{N}(m_1,\cdots,m_n;g)$) the number of such Galois extensions. Throughout this paper, for technical reasons, we confine ourselves to the case where $m_1=p$. This assumption is essential to our arguments. In Theorem 1, we shall obtain formulas for $N(m_1,\cdots,m_n;g)$ and $\tilde{N}(m_1,\cdots,m_n;g)$. In particular, $N(k)=N(p,\infty,k;0)$ ($k=1,\cdots,7$ or k is a prime), $N(p,\infty,\cdots,\infty;g)$ and $\tilde{N}(p,\infty,\cdots,\infty;g)$ ($p \neq 2$) can be determined explicitly as follows:

$$N(1) = N(2) = 0, N(4) = (p-1), N(6) = 2(p-1)$$

$$N(q) = \begin{cases} (p-1)(q-1)/2 & q \mid (p^2-1) \\ p-1 & q=p \\ 0 & \text{otherwise} \end{cases}$$

for every odd prime q. Furthermore,

Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan (1988).