POINCARÉ SERIES FOR DISCRETE MOEBIUS GROUPS ACTING ON THE UPPER HALF SPACE

Katsumi Inoue

(Received January 16, 1991, revised September 17, 1991)

Abstract

Consider the Poincare series of order t for a discrete Moebius group acting on the n-dimensional upper half-space. If the point at infinity is a horocyclic limit point or a Garnett point, then the series diverges for any positive number t. If the point at infinity is an ordinary point or a cusped parabolic fixed point, then the series converges for any t which is greater than $n-1$. If the point at infinity is an atom for the Patterson-Sullivan measure, then the series converges for any t which is equal to or greater than the critical exponent of the group.

1. Discrete Moebius groups. Let R^{n} and $\overline{R^{n}}$ be the n-dimensional Euclidean space and its one-point compactification, respectively. We use the notation $x=\left(x_{1}, \ldots, x_{n}\right) \in$ R^{n} and when matrices act on x, we treat x as a column vector. The subspace $H^{n}=\left\{x \in R^{n} \mid x_{n}>0\right\}$ of R^{n} is a model for the hyperbolic n-space and supports a metric ρ derived from the differential $d \rho=|d x| / d x_{n}$. We call H^{n} the n-dimensional upper half-space.

The (full) Moebius group $M\left(\overline{R^{n}}\right)$ is the group of Moebius transformations of $\overline{R^{n}}$, which is generated by inversions in spheres and reflections in planes. Moebius transformations are classified into three conjugacy classes in $M\left(\overline{R^{n}}\right)$ as follows. An element in $M\left(\overline{R^{n}}\right)$ is said to be loxodromic if it is conjugate to a transformation of the form

$$
\begin{equation*}
\gamma(x)=\lambda T x, \tag{1.1}
\end{equation*}
$$

where $\lambda>0, \lambda \neq 1$, and $T \in O(n)$, the group of $n \times n$-orthogonal matrices, and parabolic if it is conjugate to a transformation of the form

$$
\begin{equation*}
\gamma(x)=T x+a, \tag{1.2}
\end{equation*}
$$

where $T \in O(n), a \in R^{n}$ and $T a=a \neq 0$. A non-trivial element is said to be elliptic if it is neither loxodromic nor parabolic.

By $\gamma^{\prime}(x)$ we denote the Jacobian matrix of $\gamma \in M\left(\overline{R^{n}}\right)$ at $x \in R^{n}$. For $\gamma \in M\left(\overline{R^{n}}\right)$ the chain rule implies that $\gamma^{\prime}(x)$ can be written as $\gamma^{\prime}(x)=v T(x)$ with $v>0$ and $T \in O(n)$. We denote by $\left|\gamma^{\prime}(x)\right|$ this positive number v and call it the linear magnification of γ at x. For $\gamma \in M\left(\overline{R^{n}}\right)$ with $\gamma(\infty) \neq \infty$ the set $I(\gamma)=\left\{x \in R^{n}| | \gamma^{\prime}(x) \mid=1\right\}$ is an $(n-1)$-sphere with center $\gamma^{-1}(\infty)$. The sphere $I(\gamma)$ is called the isometric sphere of γ. The action of γ on

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 30F40.

