POINCARÉ SERIES FOR DISCRETE MOEBIUS GROUPS ACTING ON THE UPPER HALF SPACE

KATSUMI INOUE

(Received January 16, 1991, revised September 17, 1991)

Abstract. Consider the Poincaré series of order t for a discrete Moebius group acting on the n-dimensional upper half-space. If the point at infinity is a horocyclic limit point or a Garnett point, then the series diverges for any positive number t. If the point at infinity is an ordinary point or a cusped parabolic fixed point, then the series converges for any t which is greater than n-1. If the point at infinity is an atom for the Patterson-Sullivan measure, then the series converges for any t which is equal to or greater than the critical exponent of the group.

1. Discrete Moebius groups. Let R^n and $\overline{R^n}$ be the *n*-dimensional Euclidean space and its one-point compactification, respectively. We use the notation $x = (x_1, \ldots, x_n) \in R^n$ and when matrices act on x, we treat x as a column vector. The subspace $H^n = \{x \in R^n \mid x_n > 0\}$ of R^n is a model for the hyperbolic *n*-space and supports a metric ρ derived from the differential $d\rho = |dx|/dx_n$. We call H^n the *n*-dimensional upper half-space.

The (full) Moebius group $M(\overline{R^n})$ is the group of Moebius transformations of $\overline{R^n}$, which is generated by inversions in spheres and reflections in planes. Moebius transformations are classified into three conjugacy classes in $M(\overline{R^n})$ as follows. An element in $M(\overline{R^n})$ is said to be loxodromic if it is conjugate to a transformation of the form

$$\gamma(x) = \lambda T x ,$$

where $\lambda > 0$, $\lambda \neq 1$, and $T \in O(n)$, the group of $n \times n$ -orthogonal matrices, and parabolic if it is conjugate to a transformation of the form

$$\gamma(x) = Tx + a \,,$$

where $T \in O(n)$, $a \in \mathbb{R}^n$ and $Ta = a \neq 0$. A non-trivial element is said to be elliptic if it is neither loxodromic nor parabolic.

By $\gamma'(x)$ we denote the Jacobian matrix of $\gamma \in M(\overline{R^n})$ at $x \in R^n$. For $\gamma \in M(\overline{R^n})$ the chain rule implies that $\gamma'(x)$ can be written as $\gamma'(x) = \nu T(x)$ with $\nu > 0$ and $T \in O(n)$. We denote by $|\gamma'(x)|$ this positive number ν and call it the linear magnification of γ at x. For $\gamma \in M(\overline{R^n})$ with $\gamma(\infty) \neq \infty$ the set $I(\gamma) = \{x \in R^n \mid |\gamma'(x)| = 1\}$ is an (n-1)-sphere with center $\gamma^{-1}(\infty)$. The sphere $I(\gamma)$ is called the isometric sphere of γ . The action of γ on

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F40.