Tôhoku Math. J. 44 (1992), 581-595

GLOBAL DENSITY THEOREM FOR A FEDERER MEASURE

HIROSHI SATO

(Received November 18, 1991, revised May 14, 1992)

Abstract. The local and global density theorems for the Lebesgue measure in a Euclidean space play a fundamental role in calculus. On the other hand Federer [5] proved a local density theorem for a measure with a doubling condition on a metric space.

The aim of this paper is to prove a global density theorem for a measure with a doubling condition and a class of integrable functions on a metric space. As a special case this theorem also gives a simple and constructive proof to Federer's local density theorem.

A typical example of the above measures is the Hausdorff measure on a self-similar set.

1. Introduction. Throughout the paper E = (E, d) denotes a metric space, B(x, r) for $x \in E$ and r > 0 the closed ball $\{y \in E; d(x, y) \le r\}$ and U(x, r) the open ball $\{y \in E; d(x, y) \le r\}$, and λ a measure defined on a σ -algebra \mathscr{B}_{λ} of subsets of E such that \mathscr{B}_{λ} includes the Borel field $\mathscr{B}(E)$ of E,

$$\lambda(A) = \inf \{ \lambda(G); A \subset G, G \text{ open} \}, \qquad A \in \mathscr{B}_{\lambda},$$

and $\lambda(B(x, r)) < \infty$ for any r > 0 and λ -almost all $x \in E$.

For a real measure μ on $(E, \mathscr{B}(E))$, $(d\mu/d\lambda)(x)$ denotes the Radon-Nikodym derivative in the sense of the Lebesgue decomposition of μ with respect to λ , that is,

$$d\mu(x) = \frac{d\mu}{d\lambda}(x)d\lambda(x) + d\mu_s(x)$$

where $d\mu_s(x)$ is singular with respect to $d\lambda(x)$.

When λ is the Lebesgue measure, the following density theorems are well-known and fundamental in calculus.

THEOREM 1 (Local density theorem, see for example Dunford and Schwartz [4]). Let λ be the Lebesgue measure on $E = \mathbf{R}^n$. Then we have

$$\frac{d\mu}{d\lambda}(x) = \lim_{r \downarrow 0} \frac{\mu(B(x, r))}{\lambda(B(x, r))}, \quad a.e. (d\lambda),$$

for any real measure μ on \mathbb{R}^n .

THEOREM 2 (Global density theorem). Let λ be the Lebesgue measure on $E = \mathbb{R}^n$,

¹⁹⁹¹ Mathematics Subject Classification. Primary 28A15.