GROUPS GRADED BY FINITE ROOT SYSTEMS¹

ZHIYONG SHI

(Received December 9, 1991, revised March 30, 1992)

Abstract. A Steinberg group $St(\Delta, R)$ is defined by the data of a ring R and a root system Δ . This paper aims to study the relationship between the group-theoretic structure of a Steinberg group and the associated ring. We introduce graded groups which are groups satisfying some axioms that are basic properties of $St(\Delta, R)$, and then show that these properties suffice to determine the structures of graded groups, by constructing a ring out of a graded group. Also the central extensions of graded groups are studied.

Introduction. In this paper, the groups graded by finite root systems Δ , or Δ -graded groups, are introduced. These are analogues of Lie algebras graded by finite root systems which are studied by Berman and Moody [1]. The background is the structures of Steinberg groups and Chevalley groups. The connection among Δ -graded groups, Steinberg groups and central extensions can be seen throughout the article.

Assume that our rings are always associative and with the identity element denoted by 1. For each $l \ge 1$, all $(l+1) \times (l+1)$ invertible matrices over R form the general linear group $GL_{l+1}(R)$. Let E_{ij} be the (i, j) matrix unit of $GL_{l+1}(R)$. Then the elementary group $E_{l+1}(R)$, the subgroup of $GL_{l+1}(R)$ generated by $l+rE_{ij}$ for $r \in R$ and $i \ne j$, models the definition of the Steinberg group $St(A_l, R)$, where A_l is a type of root systems. Both $St(A_l, R)$ and E_{l+1} can be assigned a grading by the root system of Type A_l in terms of the group commutators. Now the question is: without given a ring in advance, would the graded property will determine the structure of such a group? This motivates our definition for a Λ -graded group (cf. Definition (2.1)), where we assume that the root system Λ is always one of the types $A_l, l \ge 3, D_l, l \ge 4$ and $E_l, l=6, 7, 8$, unless otherwise stated. We have:

(2.3) THEOREM. Let G be a group graded by Δ . Then there is an associative ring R with 1, such that G is a homomorphic image of the Steinberg group $St(\Delta, R)$. Moreover, R is commutative if Δ is of Type D_1 or E_1 .

Note that here all associative rings fit in here. For the proof, the critical point is to define the ring R out of such a group. The main theme of the proof is set in [1] on the Lie algebra level.

Then for each Δ -graded group, we may attach a ring R. A Δ -homomorphism of Δ -graded groups is naturally understood to be a group homomorphism which preserves

¹ This is a part of the author's Ph.D. thesis at the University of Alberta, Edmonton, Alberta, Canada. 1991 *Mathematics Subject Classification*. Primary 20F40; Secondary 20E34, 19C09, 20F05.