ON RATIONAL POINTS OF CURVES OF GENUS 3 OVER FINITE FIELDS

Tomoyoshi Ibukiyama*

(Received January 29, 1992, revised September 9, 1992)

Abstract

Let F be any finite field with q elements such that q is the square of an odd prime. For each extension F^{\prime} of odd (resp. even) degree over F, we shall show that there exists a curve of genus 3 defined over F^{\prime} such that the number of F^{\prime}-rational points attains the maximum (resp. minimum) of the Weil estimation.

For any curves C defined over finite fields $\boldsymbol{F}_{q}\left(q=p^{d} ; p\right.$: prime), Weil [20] gave an estimate for the cardinality of the set $C\left(\boldsymbol{F}_{q}\right)$ of $\boldsymbol{F}_{\boldsymbol{q}}$-rational points of C as follows:

$$
\left|\#\left(C\left(\boldsymbol{F}_{q}\right)\right)-1-q\right| \leq 2 g \sqrt{q}
$$

where $g=g(C)$ is the genus of the curve C. When q is a square, for a fixed q and variable g, very interesting phenomena occur and the upper bound and asymptotic behaviour for $g \rightarrow \infty$ were studied for example by Ihara [11], Manin-Valdut [12]. Now, Serre [19], [18] studied the bound for a fixed g and variable q. A part of his results says that for any square $q=p^{2 e}$ when $g=1$, and for each square $q \neq 4$ or 9 when $g=2$, there exist curves C_{1} and C_{2} defined over \boldsymbol{F}_{q} such that

$$
\#\left(C_{1}\left(\boldsymbol{F}_{q}\right)\right)=1+q+2 g p^{e}, \quad \#\left(C_{2}\left(\boldsymbol{F}_{q}\right)\right)=1+q-2 g p^{e},
$$

that is, there exist curves such that the number of $\boldsymbol{F}_{\boldsymbol{q}}$-rational points attains Weil's maximum, or minimum. But it remained open, except for several small q and g, whether this is also true for any $g \geq 3$ and for almost all q. (Serre, loc. cit. When q is some power of 2 , see also Oort [14].) In this paper, we shall show the following:

Theorem 1. For each odd prime p and each positive integer e, there exists a nonsingular irreducible curve C of genus 3 defined over \boldsymbol{F}_{p} such that the number of $\boldsymbol{F}_{p^{2 e}}$ rational points attains the maximum (resp. the minimum) of the Weil inequality for odd (resp. even) e, that is,

$$
\#\left(C\left(\boldsymbol{F}_{p^{2 e}}\right)\right)=1+p^{2 e}+(-1)^{e+1} 6 p^{e} .
$$

More precisely, there exists a curve C defined over \boldsymbol{F}_{p} such that the Jacobian variety $J(C)$ of C is isomorphic over $\boldsymbol{F}_{p^{2}}$ to the product of three copies of a supersingular elliptic curve

[^0]
[^0]: * Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 11G20; Secondary 14G15, 14G05, 11E41.

