FUNCTIONS WHICH OPERATE ON ALGEBRAS OF FOURIER MULTIPLIERS

OSAMU HATORI

(Received November 1, 1993, revised May 25, 1994)

Abstract. We study functions which operate on a Banach space of bounded functions defined on a discrete space. As a consequence we characterize functions which operate on the algebra of the translation invariant operators from $L^{p}(G)$ to $L^{2}(G)$ for 1 and for a compact abelian group G.

1. Introduction. Let G be a compact abelian group and \hat{G} the dual group of G. Let $1 \le p, q \le \infty$. A bounded operator T from $L^p(G)$ to $L^q(G)$ is called a (L^p, L^q) -multiplier if $TT_{\gamma} = T_{\gamma}T$ for every $\gamma \in G$, where $T_{\gamma}f(x) = f(x-\gamma)$. The set of all (L^p, L^q) -multipliers is denoted by M(p, q). Since G is a compact abelian group the Fourier transform \hat{T} for $T \in M(p, q)$ is a complex-valued bounded function defined on the discrete group \hat{G} . We denote $M(p, q)^{\hat{}} = \{\hat{T} : T \in M(p, q)\}$. If $p \le q$, then M(p, q) is a Banach algebra and $M(p, q)^{\hat{}}$ is a Banach algebra of bounded functions on \hat{G} . Let E be a space of complex-valued functions defined on a set X. We say a complex-valued function φ defined on a subset S of C operates on E if $\varphi \circ f \in E$ for every $f \in E$ such that $f(X) \subset S$.

The algebra M(1, 1) is isometric and isomorphic to the algebra M(G) of all the bounded regular Borel measures on G and the operating functions on $M(G)^{\circ}$ is characterized by Kahane and Rudin [10]. The result is extended to the case of $p = q \neq 2$ by Igari [8]. Igari and Sato [9] consider the case of $1 \le p < q \le \infty$. They prove, for example, that if $1 \le p < q \le 2$ or $2 \le p < q \le \infty$, n_0 is the smallest n integer such that $n \ge \beta_0 = (1/q - 1/2)/(1/p - 1/q)$ or $n \ge \beta_0 = (1/2 - 1/p)/(1/p - 1/q)$ respectively, and φ_0 is a bounded function on [-1, 1], then for any constants $\alpha_1, \alpha_2, \ldots, \alpha_{n_0}$ the function

$$\varphi(t) = \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_{n_0} t^{n_0} + |t|^{\beta_0 + 1} \varphi_0(t)$$

defined on [-1, 1] operates on M(p, q). They also prove that if $1 \le p < 2 \le q \le \infty$, $\beta_1 = \min\{(1/2 - 1/q)/(1/p - 1/2), (1/p - 1/2)/(1/2 - 1/q)\}$ and φ_0 is a bounded function on [-1, 1], then for any constant α the function

$$\varphi(t) = \alpha t + |t|^{\beta_1 + 1} \varphi_0(t)$$

operates on M(p, q). The converse of the last result when G is the circle group is also proven by Igari and Sato [9]. One of the essential arguments they use in their proof

Key words and phrases. Fourier multiplier, operating function.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42A45; Secondary 43A22, 46J10.