A DIFFERENTIABLE SPHERE THEOREM BY CURVATURE PINCHING II

Dedicated to Professor Shoshichi Kobayashi on his sixtieth birthday

Yoshiniko Suyama

(Received May 31, 1993, revised August 19, 1994)

Abstract

We give a new diffeotopy theorem on the standard sphere, and an estimate for some geometric invariants concernin'g positively curved Riemannian manifold. By using these results we prove that a complete, simply connected and 0.654 -pinched Riemannian manifold is diffeomorphic to the standard sphere.

Introduction. Let $\left(M^{n}, g\right)$ be a complete, simply connected and δ-pinched Riemannian n-manifold. In this paper we prove that if $\delta=0.654$, then M is diffeomorphic to the standard sphere S^{n}.

For a $\delta(>1 / 4)$-pinched Riemannian n-manifold, an orientation preserving diffeomorphism f of S^{n-1} is naturally defined, and is used in the proof of the differentiable sphere theorem [3, 4]. In fact, if there exists a diffeotopy from f to an isometry f_{1} of S^{n-1}, then M is diffeomorphic to the standard sphere. In order to find the minimum of such δ 's it is important to construct a diffeotopy in as many different ways as possible. In this paper, we propose a new construction of a diffeotopy. The statement of our diffeotopy theorem and the construction of diffeotopy in it are fairly simple in comparison with these in [4]. Furthermore, by giving new estimates concerning f and its differential $d f$ we prove the differentiable sphere theorem above. In this paper we use the same notation as in $[4, \S 2-\S 6]$.

The author would like to thank the referees for careful reading of the previous versions of this paper and for valuable suggestions for improvements.

1. $\delta(>1 / 4)$-pinched Riemannian manifolds. Let $\left(M^{n}, g\right)$ be a complete, simply connected and $\delta(>1 / 4)$-pinched Riemannian n-manifold, i.e., the sectional curvature K of M satisfies $\delta \leq K \leq 1$ everywhere. We denote by D the Levi-Civita connection induced by the Riemannian metric g. First, we review the definitions of the diffeomorphism f, mentioned in the Introduction, and the differentiable map $\alpha: S^{n-1} \ni x \mapsto \alpha_{x} \in S O(n, \boldsymbol{R})$, which is regarded as an approximation of $d f$, and related results in (A) and (B) below (cf. [4]). Let S^{n-1} be the standard sphere with sectional curvature 1, i.e., $S^{n-1}=S^{n-1}(1)$. We denote by $d_{s}(x, y)$ the distance between x and y
