ON THE KRIEGER-ARAKI-WOODS RATIO SET

Gavin Brown, Anthony H. Dooley and Jane Lake

(Received February 24, 1992, revised July 18, 1994)

Abstract

We show how to calculate the ratio sets of G-measures as limit points of infinite products of the associated g-functions. In particular, we show that every g-measure is of type III_{1}.

1. Introduction. By Dye's celebrated theorem, every ergodic system of type II or type III is orbit equivalent to one of the form (X, Γ, μ), where X is the infinite product of two-point spaces, Γ the (countable) group of finite coordinate changes in X, and μ some measure on X which is quasi-invariant and ergodic with respect to the action of Γ. The Krieger-Araki-Woods ratio set, discussed in [9], is an invariant for orbit equivalence, allowing classification into systems of types $\mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{III}_{1}, \mathrm{III}_{\lambda}(0<\lambda<1)$, and III_{0}. We will discuss here only probability measures.

In a recent paper [1], two of the authors introduced the G-measure formalism, showing that all ergodic measures may be regarded as a generalization of the g-measures of M. Keane, that is, there are functions g_{k} on X such that

$$
\frac{d \mu}{d \mu^{(n)}}(x)=g_{1}(x) g_{2}(x) \cdots g_{n}(x)=G_{n}(x)
$$

Here, $\mu^{(n)}$ denotes the measure μ averaged over the first n coordinates, and the function g_{i} depends on the coordinates (x_{i}, x_{i+1}, \cdots) and satisfies

$$
\frac{1}{2}\left(g_{i}\left(0, x_{i+1}, x_{i+2}, \cdots\right)+g_{i}\left(1, x_{i+1}, x_{i+2}, \cdots\right)\right)=1 \quad \text { for every } \quad x \in X .
$$

In this paper, we shall seek to characterise the ratio set of μ in terms of the limit points of infinite products of the form $\prod_{i=n}^{\infty} g_{i}(u) / g_{i}(v), u, v \in X$. Our major result, Theorem 4.4, gives a necessary and a different sufficient condition which are nevertheless rather close to each other, for a number r to belong to the ratio set. In Section 5, this theorem is applied to show that provided the image of g contains an interval, every g-measure is of type III_{1}. Hence by a theorem of Connes-Krieger [3], [5], they are all orbit equivalent. In the last section, we apply our results to infinite product measures.

We gratefully acknowledge the support of the Australian Research Council. The second-named author would like to thank the Department of Mathematics, Université

