ON A TWISTED DE RHAM COMPLEX

CLAUDE SABBAH

(Received September 24, 1997, revised June 19, 1998)

Abstract. We show that, given a projective regular function $f: X \to C$ on a smooth quasi-projective variety, the corresponding cohomology groups of the twisted de Rham complex $(\Omega_X^*, d-df \land)$ and of the complex $(\Omega_X^*, df \land)$ have the same dimension. We generalize the result to de Rham complexes with coefficients in a mixed Hodge Module.

Introduction.

0.1. Let \tilde{X} be a smooth projective variety over C and $(\Omega_{\tilde{X}}^{*}, d)$ be the complex of algebraic differential forms. Hodge theory and GAGA theorem of Serre (see also [7] for an algebraic argument, or [8] for other references) show that the hypercohomology spaces on \tilde{X} of both complexes $(\Omega_{\tilde{X}}^{*}, d)$ and $(\Omega_{\tilde{X}}^{*}, 0)$ have the same dimension (this follows from the degeneracy at E_1 of the spectral sequence Hodge \Rightarrow de Rham).

0.2. Denote by $\mathcal{O}_{\tilde{X}}$ the sheaf of regular functions on \tilde{X} and by $\mathcal{D}_{\tilde{X}}$ the sheaf of differential operators with coefficients in $\mathcal{O}_{\tilde{X}}$. More generally, let (\tilde{M}, F) be a mixed Hodge Module on \tilde{X} as defined by M. Saito [18, §4], where $F.\tilde{M}$ is in particular a good filtration (increasing and exhaustive) of the $\mathcal{D}_{\tilde{X}}$ -Module \tilde{M} . The (algebraic) de Rham complex $DR(\tilde{M}) = (\Omega_{\tilde{X}} \otimes_{\mathcal{O}_{\tilde{X}}} \tilde{M}, \nabla)$ is naturally filtered using F(see [3]): the degree-*l* term of $F_k DR(\tilde{M})$ is $\Omega_{\tilde{X}}^l \otimes F_{k+l}\tilde{M}$, that is also denoted by

$$F_k \mathbf{DR}(\tilde{M}) = \left(\Omega_{\tilde{X}} \otimes_{\ell_{\tilde{X}}} F_k[-\cdot]\tilde{M}, \nabla\right).$$

The associated graded complex is equal to the complex $(\Omega_{\tilde{X}} \otimes_{\mathscr{O}_{\tilde{X}}} \operatorname{gr}^{F} \widetilde{M}, \operatorname{gr}^{F} \nabla)$, where $\operatorname{gr}^{F} \nabla = \bigoplus_{k} [\nabla]_{k}^{k+1}$ and $[\nabla]_{k}^{k+1}$ is the degree-1 $\mathscr{O}_{\tilde{X}}$ -linear morphism induced by ∇

$$\Omega^{l}_{\widetilde{X}} \underset{{}^{\mathscr{O}_{\widetilde{X}}}}{\otimes} \operatorname{gr}_{k}^{F} \widetilde{M} \longrightarrow \Omega^{l+1}_{\widetilde{X}} \underset{{}^{\mathscr{O}_{\widetilde{X}}}}{\otimes} \operatorname{gr}_{k+1}^{F} \widetilde{M} .$$

The degeneracy at E_1 (see [18, (4.1.3)]) now implies that the hypercohomology spaces on \tilde{X} of the complexes $DR(\tilde{M})$ and $(\Omega_{\tilde{X}} \otimes_{\mathcal{O}\tilde{X}} \operatorname{gr}^F \tilde{M}, \operatorname{gr}^F \nabla)$ have the same dimension.

0.3. Let $\tilde{f}: \tilde{X} \to P^1$ be a morphism of algebraic varieties and let $f: X \to A^1$ be its restriction over the affine line A^1 . Thus, X is quasi-projective and f is projective.

THEOREM 1. Let (M, F) be a mixed Hodge Module on X. Then the hypercohomology spaces on X of the complexes $(\Omega_X^{\cdot} \otimes_{\mathscr{O}_X} M, \nabla - df \wedge)$ and $(\Omega_X^{\cdot} \otimes_{\mathscr{O}_X} \operatorname{gr}^F M, \operatorname{gr}^F \nabla - df \wedge)$ have the same (finite) dimension.

0.4. REMARK. If ϕ_f denotes the vanishing cycle functor as defined by Deligne [6] (see also [10]) and DR^{an} the analytic de Rham functor, it is well-known (cf. §1.1)

¹⁹⁹¹ Mathematics Subject Classification. Primary 14D07; Secondary 14D05, 32G20, 32S40.