COHOMOLOGY THEOREMS FOR ASYMPTOTIC SHEAVES

Jorge Mozo Fernández
(Received December 8, 1997, revised November 18, 1998)

Abstract

In this paper, we study the sheaves $\mathcal{A}_{E}^{<0}$ and $\mathcal{A}_{E}^{<-\kappa}$ of strongly asymptotically developable functions with null expansion, which are subsheaves of \mathcal{A} defined by Majima. Following the method developed in one variable by Sibuya, and in several variables by Majima, we compute the first cohomology group of the n-torus and the boundary of the real blow-up with coefficients in these sheaves. The same technique is used to study the multiplicative case (sheaves of non-abelian groups), in order to calculate the first cohomology set. This generalizes previous results of Majima, Haraoka and Zurro.

1. Definitions and notations. A polysector $V=V_{1} \times \cdots \times V_{n}$ in \boldsymbol{C}^{n} is a product of open sectors, an open sector being a set of the type

$$
V_{\alpha, \beta, R}=\{z \in \boldsymbol{C}|\alpha<\arg z<\beta, 0<|z|<R\}
$$

where $R \in(0, \infty]$. The number $\beta-\alpha$ is the opening of $V_{\alpha, \beta, R}$. A subpolysector W of V $(W<V)$ is $W_{1} \times \cdots \times W_{n}$, where W_{i} is a closed sector of finite radius and strictly smaller opening than V_{i}.
$\mathcal{A}(V)$ will denote the \boldsymbol{C}-algebra of functions that are strongly asymptotically developable in V, introduced by Majima in [M1]. Let us recall that $f \in \mathcal{A}(V)$ if and only if there exist a family of functions

$$
\mathcal{F}=\left\{f_{\alpha_{J}}\left(z_{J^{c}}\right) \in \mathcal{O}\left(V_{J^{c}}\right) \mid \emptyset \neq J \subseteq\{1, \ldots, n\}, \alpha_{J} \in N^{J}\right\}
$$

such that, if $W<V$ and $N \in N^{n}$, there exists $C_{W, N}>0$ with

$$
\left|f(z)-\operatorname{App}_{N}(\mathcal{F})(z)\right|<C_{W, N} \cdot\left|z^{N}\right| \text { in } W
$$

where

$$
\operatorname{App}_{N}(\mathcal{F})(z)=\sum_{\emptyset \neq J \subseteq\{1, \ldots, n\}} \sum_{j \in J} \sum_{\alpha_{J}<N_{J}}(-1)^{\sharp J+1} \cdot f_{\alpha_{J}}\left(z_{J}\right) \cdot z_{J}^{\alpha_{J}}
$$

and $J^{c}=\{1, \ldots, n\} \backslash J$. We have used the following notations: if $J \in\{1, \ldots, n\}, V_{J}:=$ $\prod_{j \in J} V_{j}$, and z_{J} is the element of V_{J} obtained by projection of $z \in V$ to V_{J}. This family \mathcal{F} (the total family of coefficients of f) is unique, and it will be denoted by $T A(f)$. As in [M1], for $f \in \mathcal{A}(V), \emptyset \neq J \subseteq\{1, \ldots, n\}, F A_{J}(f)$ will denote the series

$$
F A_{J}(f)=\sum_{\alpha_{J} \in N^{J}} f_{\alpha_{J}}\left(z_{J c}\right) z_{J}^{\alpha_{J}} \in \mathcal{A}\left(V_{J c}\right)\left[\left[z_{J}\right]\right] .
$$

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 41A60; Secondary 55N30.
 Partially supported by the TMR (Training and Mobility Researchers) European Network ERBFMRXCT960040 and the DGICYT (Dirección General de Investigación Científica y Técnica).

 The author wants to thank the referee and the editorial office for their remarks.

