CORRECTION: EXTREME STABILITY AND ALMOST PERIODICITY IN A DISCRETE LOGISTIC EQUATION

(Tohoku Math. J. 52 (2000), 107-125)

Sannay Mohamad and Kondalsamy Gopalsamy

(Received February 22, 2001, revised June 22, 2001)

The authors of the article [1] have noticed a few errors in [1] and the following corrections have to be made:
(I) The inequalities in (2.4) should read

$$
x_{\max }=\frac{K^{*}}{r_{*}} \exp \left(r^{*}-1\right), \quad x_{\min }=K_{*} \exp \left(r_{*}-\frac{r^{*}}{K_{*}} x_{\max }\right) .
$$

In view of this redefinition of $x_{\min }$, Lemma 2.1 needs a revised proof and the following is a complete new proof of Lemma 2.1 with the above modification of the inequalities in (2.4). Define $f_{n}(x), F(x), g(x), x_{\max }, x_{\min }$ as follows:

$$
\begin{aligned}
& f_{n}(x)=x \exp \left[r(n)\left(1-\frac{x}{K(n)}\right)\right], \quad F(x)=x \exp \left(r^{*}-\frac{r_{*} x}{K^{*}}\right) \\
& g(x)=K_{*} \exp \left(r_{*}-\frac{r^{*} x}{K_{*}}\right) ; \quad x_{\max }=F\left(\frac{K^{*}}{r_{*}}\right), \quad x_{\min }=g\left(x_{\max }\right)
\end{aligned}
$$

Proof of Lemma 2.1 is divided into four steps for convenience:
Step 1. We have from

$$
x(n+1)=f_{n}(x(n)) \leq F(x(n)) \leq \sup _{x>0} F(x)=x_{\max }
$$

that

$$
\limsup _{n \rightarrow \infty} x(n) \leq x_{\max } \quad \text { since } \quad x(n) \leq F\left(\frac{K^{*}}{r_{*}}\right) \quad \text { for all } \quad n \geq 1
$$

Step 2. Suppose there exists an integer N such that $x(n+1) \geq x(n)$ for all $n \geq N$. Then one can show that

$$
\liminf _{n \rightarrow \infty} x(n) \geq x_{\min }
$$

for instance we have from the boundedness of $\{x(n)\}$, that $\lim _{n \rightarrow \infty} x(n)=x^{*}$ exists and is finite. By letting $n \rightarrow \infty$ in the relation

$$
x(n+1)=x(n) \exp \left[r(n)\left(1-\frac{x(n)}{K(n)}\right)\right],
$$

