NOTES ON FOURIER ANALYSIS (XX): ON THE RIESZ LOGARITHMIC SUMMABILITY OF THE DERIVED FOURIER SERIES.**

By

Noboru Matsuyama.

1. Let $f(x)$ be an integrable function with the period 2π and its Fourier series be

(1)
$$
f(x) \sim \frac{1}{2} c_0 + \sum_{n=1}^{\infty} (c_n \cos nx + b_n \sin nx).
$$

If we differentiate the series term by term, we get

(2)
$$
\sum_{1}^{\infty} n(-a_n \sin nx + b_n \cos nx),
$$

which is said the derived Fourier series of $f(x)$ and denote it by $S[f]$.

The object of the present paper is to treat the Riesz logarithmic $\text{mability of } \left(2 \right)$ summability of $\left(2\right)$.

Concerning the Fourier series Wang has proved the following theorems: Theorem A. If

lim $\varphi(t)=s$ (*R*, log *n*, α) ($\alpha > 0$),

t—>ΰ $\frac{1}{\sqrt{R}}$ is $\frac{1}{\sqrt{R}}$, $\frac{1}{\sqrt{R}}$, $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ of $\frac{1}{\sqrt{R}}$ or $\frac{1}{\sqrt{R}}$ or number.
For

Theorem B. $\mathbf{F}(\mathbf{r})$ is $\mathbf{F}(\mathbf{r})$ as $\mathbf{F}(\mathbf{r})$ summable to sum s at $t = x$, then lim_{$\varphi(t) = s(R, \log n, \alpha + 1 + \delta)$ *(* $\alpha > 0$ *).*}

We prove analogus theorems concenning derived Fourier series (2), which reads as follows:

Theorem 1. If

 $\psi(t)/t = s$ (*R*, log *n*, α) ($\alpha > 0$),

then (2) is (R, log n, $\alpha+1+\delta$)-summable to sum s at $t = x$, where δ is any positive number.

Theorem 2. If (2) is $(R, \log n, \alpha)$ -summable to sum s at $t = x (\alpha > 1)$, then

$$
\lim_{t \to 0} \psi(t)/t = s \ (R, \log n, \alpha + 1 + \delta)
$$

*> Received Nov. 1st, 1947.