NOTES ON FOURIER ANALYSIS (XV) ON THE ABSOLUTE CONVERGENCE OF

TRIGONOMETRICAL SERIES.*)1)

By Shigeki Yano.

I. Let us conder the trigonometrical series

(1)
$$\sum_{n=1}^{\infty} \rho_n \cos (nx - \alpha_n)$$

where $\rho_n \ge 0$ $(n=1,2,\dots)$ and

(2)
$$\sum_{n=1}^{\infty} \rho_n = \infty.$$

We have proved that if

$$\rho_n = O(1/n),$$

then the set of points where the series (1) converges absolutely is of α -capacity zero $(0 < \alpha < 1)^2$.

We can now prove more precise result;

Theorem³⁾ If $\rho_n = O(1/n)$ and $\sum_{n=1}^{\infty} \rho_n = \infty$, then we have

(4)
$$\lim_{n\to\infty} \frac{\sum_{k=1}^{n} \rho_k |\cos(kx-\alpha_k)|}{\sum_{k=1}^{n} \rho_k} = 2/\pi$$

except a set of α -capacity zero $(0 < \alpha < 1)$.

II. We shall firstly prove the following lemma.

Lemma. If (γ_n) is a sequence of complex quantities such that

$$\sum_{n=1}^{\infty} |\gamma_n| = \infty, \text{ and } |\gamma_n| = O(1/n),$$

then we have

^{*)} Received May 5th, 1946.

¹⁾ Read before the annual meeting of the Mathematical Society at May, 1946.

²⁾ T. Tsuchikura and S. Yano, Notes on Fourier Analysis (V): Absolute convergence of trigonometrical series, under the press.

³⁾ cf. R. Salem, The absolute convergence of trigonometrical series, Duke Math. Journ., 8 (1941).