## A NOTE ON GENERAL TOPOLOGICAL SPACES.\*)

## By

## Noboru Matsuyama.

- 1. If for any subset A of the fundamental set S we can assign a "closure" A satisfying some proper conditions, then the set S is said to be a space. In general there are two methods defining the closure, that is;
- (I) When there corresponds a family "neighbourhoods"  $V_x$  to every point x in S,  $x \in A$  is, by definition, that no  $V_x \cap A$  is vacuous.
- (II) When there is a family of "sequences"  $\{x_a\}$  in  $S^{(1)}$  for which it is always decided that  $\{x_a\}$  converge to x or not,  $x \in \overline{A}$  is by definition, that there is a sequence in A convergent to x.

S is said to be a neighbourhood space or convergent space according as it is topologized by a system of neighbourhoods or a family of convergent sequences. When convergence of sequences are suitably defined by means of system of neibourhoods, the neighbourhood space becomes a convergence space. For example, if in a neighbourhood space S convergency of the sequence S is defined by

(III)  $\{x_a\}$  converges to x if and only if for each neighbourhood  $V_x$  of x, there exists an  $\alpha_0 = \alpha_0(V_x)$  such that  $\alpha > \alpha_0$  implies  $x_a \in V_x$ , then S becomes a convergence space.

In this paper we intoduce the notion of " $\varphi$ -closure" (in Definition 2), by which neighbourhood space turns to the space with " $\varphi$ -topology". Main results concerning  $\varphi$ -topology are cotained in Theorem 4.

But if we consider some set A such as  $\{x_a\}\subset A\subset S$ , we obtain many interesting results, for instance, all convergence topologies defined in S is a Boolean algebra<sup>(2)</sup> by some order relation.

- 2. Let  $\varphi$  be a set-function on  $2^s$  (=family of all subsets in S) such that
  - (2, 1) for any subset A in S,  $A \subset \varphi(A)$ ,
- (2, 2)  $A \subset B$  implies  $\varphi(A) \subset \varphi(B)$ .

And let  $\phi$  be the class of all such  $\varphi$ .

<sup>\*</sup> Received July 12th, 1943,

<sup>(1)</sup> For any finite or infinite directed set.

<sup>(2)</sup> G. Birkhoff, Fund Math., XXVI(1936).