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1. Introduction. The object of this paper is to generalize Young's
convergence criterion for Fourier series. To simplify the writing, we
shall suppose that the Fourier series

oo

Φ(t) ~ ^r aQ + 2 Λ » cos nt
Δ »=i

in question is that of an even periodic function which is integrable in the
Lebesgue sense. Then Pollard [4H generalizes Young's test as follows.

THEOREM. The Fourier series of <P(t) converges at the point t = 0 to
the value zero, provided that

( 1) f <P(u)du = o(t), as t -> 0

Ό
and

/
C2) I \d{uφ(u)}\ = O(O, O^t^η.

ό
On the other hand Hardy and Littlewood [1] proposed the problem,

whether we can replace (1) and (2.) by
t

( 3 ) Γ <P(u)du = o (tjlog-j-) , as t -> 0

and

(4 ) f \d{u*φ(u)}\ - 0(0, O^t^η,

0

for some Δ > 1. Later Randels Γ5Ί proved that this is impossible. Concern-
ing this problem we shall prove the following theorem.

THEOREM. The Fourier series of Φ(t) converges at the point t = 0 to the
value zero, provided that there is a Δ 2̂  1 such that

( 5 ) I <P(ιU du = o(tA), as t -> 0,
o

and
t

(6) j \d{uA<P(u)}\ = O(t), OSfS^.

0

2. Proof of Theorem. It is sufficient to prove that


