THE PARACOMPACTNESS OF CW-COMPLEXES

HIROSHI MIYAZAKI

(Received November 1, 1952)

The category of paracompact normal spaces is a sufficiently broad class in which some methods of algebraic topology may be applied. It is well-known that this category contains all metric spaces, compact normal spaces and fully normal Hausdorff spaces. Simplicial complexes with the weak topology and CW-complexes in the sense of J.H.C. Whitehead $[5, §5]^{1}$ especially play important roles in the algebraic topology. Author [3, Lemma 4], J.Dugundji [2, Theorem 4] and D.G.Bourgin [1, Theorem 3] have been proved that any simplicial complex with the weak topology is paracompact. The purpose of the present note is to prove that any CW-complex is paracompact.

1. Notations. Let X be a space and W be a subset of X and $\mathfrak{V} = \{V_j\}$ be a family of subsets $V_j \subset X$ and $f: Y \to X$ be a continuous map of a space Y into X. We shall use the following notations

 $\overline{\mathfrak{V}} = \{\overline{V}_j\}$ (\overline{V}_j denotes the closure of V_j in X),

 $\mathfrak{V} \cap W = \{V_j \cap W\}, \text{ St}(W; \mathfrak{V}) = \bigcup V_j(V_j \cap W \neq \phi, V_j \in \mathfrak{V}),$

 $\operatorname{St}(\mathfrak{V}) = \{\operatorname{St}(V_j; \mathfrak{V}) | V_j \in \mathfrak{V}\}, \ f^{-1}(\mathfrak{V}) = \{f^{-1}(V_j) | V_j \in \mathfrak{V}\}.$

And $\mathfrak{U} > \mathfrak{V}$ means that each element of \mathfrak{U} is contained in some element of \mathfrak{V} .

Let E^n be the subset of *n*-dimensional Euclidean space defined by

$$-1 \leq x_i \leq 1 \qquad (i = 1, \ldots, n).$$

The boundary of E^n is denoted by S^{n-1} . For a point $x \in S^{n-1}$ and a real number $t(0 \le t \le 1)$ let (x, t) denotes a point which divides the segment joining x to the center $0 = (0, \dots, 0)$ of E^n in the ratio t: 1 - t.

For a given point $(x_0 \ t_0)$ $(x_0 \in S^{n-1}, \ 0 < t_0 < 1)$ let V be an open set of S^{n-1} which contains x_0 and let \mathcal{E} be a number such that $0 < \mathcal{E} < \min(t_0, 1 - t_0)$. Then the open set $W(x_0, \ t_0) = \{(x, \ t) | x \in V, |t - t_0| < \mathcal{E}\}$ is called a regular open set of E^n with the center $(x_0, \ t_0)$ and the bottom B $[W(x_0, \ t_0)] = V$ and the breadth $\delta[W(x_0, \ t_0)] = \mathcal{E}$.

2. Two lemmas. Here we shall prove two lemmas which are used in the proof of our main theorem.

LEMMA 1. Let P be a union²) of at most (n + 1)-dimensional element E_{Λ}^r which are mutually disjoint. Let $\mathfrak{U} = \{U_{\alpha}\}$ be any open covering of P. Let

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

²⁾ P is topologized so that each E_{λ}^{r} with its own topology is both open and closed in P.