REMARKS ON PREDICTION PROBLEM IN THE THEORY OF STATIONARY STOCHASTIC PROCESSES

TATSUO KAWATA¹⁾

(Received February 11, 1954; in Revised form March 18, 1954)

1. Suppose that X(t) is a continuous stationary process in wide sense, $E\{X(t)\} = 0, E\{|X(t)|^2\} < \infty$ and $\rho(u)$ is the correlation function $E\{X(t+u)\overline{X(t)}\}$ which is represented as

(1.1)
$$\rho(u) = \int_{-\infty}^{\infty} e^{iux} dF(x),$$

F(x) being a bounded, non-decreasing function.

In previous papers [1], [2], we have discussed about Wiener's prediction theory. The object of the present paper is to give some remarks on prediction problem in the case where F(x) satisfies a further condition that

(1.2)
$$\int_{-\infty}^{\infty} x^{2p} dF(x) < \infty,$$

p being a positive integer.

We shall first give some definitions, notations and some known results.

Let $K(\theta)$ be a function of bounded variation in every finite interval in $[0, \infty)$. If $\int_{0}^{A} e^{-ix\theta} dK(\theta)$ converges in $L_2(-\infty, \infty)$ with respect to F(x) to a function k(x) when $A \to \infty$, $K(\theta)$ is called to belong to $\mathbf{K}(0, \infty)$. That is, if

(1.3)
$$\lim_{A\to\infty}\int_{-\infty}^{\infty}\left|\int_{0}^{A}e^{-ix\theta}\,dK(\theta)-k(x)\right|^{2}\,dF(x)=0,$$

then $K(\theta) \in \mathbf{K}(0,\infty)$ and this fact is denoted as

(1.4)
$$l. \underset{A\to\infty}{\text{i.m.}} L_2(F) \int_0^A e^{ix\theta} dK(\theta) = k(x),$$

and k(x) is called the Fourier-Stieltjes transform of $K(\theta)$ in $L_2(F)$.

It is known[3] that if $K(\theta) \in \mathbf{K}(0, \infty)$, then

(1.5)
$$\lim_{A\to\infty} \int_{0}^{A} X(t-\theta) dK(\theta)$$

exists. 1. i. m. means the limit in variance. (1.5) is denoted as

¹⁾ This paper was written sponcered by Japanese Union of Scientists and Engineers.