RIEMANN-CESÀRO METHODS OF SUMMABILITY II*)

HIROSHI HIROKAWA

(Received February 1, 1956; revised November 12, 1956)

1. Introduction. In the previous paper [3], we defined Riemann-Cesàro method of summability which includes well-known Riemann methods of summability (R, p) and (R_p) . In this paper, we shall consider some Tauberian theorems for this summability.

In terms of standard notations used by Zygmund [10; p. 42] and others, Cesàro transform of order α of Σ a_n is defined by $\sigma_n^{\alpha} = s_n^{\alpha}/A_n^{\alpha}$ where s_n^{α} and A_n^{α} are given by the relations

$$\sum_{n=0}^{\infty} A_n^{\alpha} x^n = (1-x)^{-\alpha-1} \text{ and } \sum_{n=0}^{\infty} s_n^{\alpha} x^n = \frac{\sum_{n=0}^{\infty} s_n x^n}{(1-x)^{\alpha}} = \frac{\sum_{n=0}^{\infty} a_n x^n}{(1-x)^{\alpha+1}}.$$

It is well-known that $A_n^{\alpha} \sim n^{\alpha}/\Gamma(\alpha+1)$, $\alpha = -1, -2, \ldots$, as $n \to \infty$. A series is said to be evaluable (C, α) to s if $\sigma_n^{\alpha} \to s$ as $n \to \infty$. In the following, let α be a real number, not necessarily an integer, for which $\alpha \ge -1$ and

let p be a positive integer. A series $\sum_{n=1}^{\infty} a_n$ is said to be evaluable to zero

by Riemann-Cesàro method of order p and index α , or briefly, to be evaluable (R, p, α) to zero, if the series

$$t^{\alpha+1} \sum_{n=1}^{\infty} s_n^{\alpha} \left(\frac{\sin nt}{nt} \right)^p$$

converges in some interval $0 < t < t_0$ and its sum tends to zero as $t \to 0$. Under these definitions, summability (R, p, -1) and (R, p, 0) is reduced to summability (R, p) and (R, p) and (R_p) , respectively. It is known [3] that summability (R, p, α) , when $-1 \le \alpha and <math>p \ge 2$, is regular, or more precisely, summability $(C, p - 1 - \delta)$, $0 < \delta < 1$, implies summability (R, p, α) when $-1 \le \alpha , while summability <math>(R, 1, \alpha)$ is not regular when $-1 \le \alpha \le 0$.

Concerning summability (R, p), Kanno [5] proved the following

THEOREM K. Let p be a positive integer. Suppose that

$$(1.1) S_n^{\beta} = o(n^{\gamma}),$$

when $0 < \gamma < \beta$, and

(1.2)
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu} = O(n^{-(1-\delta)}),$$

^{*)} This paper is a continuation of the previous paper [3]. Cf. R. P. Agnew, Properties of generalized definitions of limit, Bull. Amer. Math. Soc., 45 (1939), 689-730.