ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS II

JUN TOMIYAMA

(Received June 20, 1958)

In this paper, we shall study the projection of norm one in W^* -algebras following [7]. Firstly, we obtain the general decomposition theorem of a projection of norm one π from a W^* -algebra \mathbf{M} to its C^* -subalgebra \mathbf{N} showing that \mathbf{N} is decomposed into the maximal W^* -representable direct summand and the rest. Restricting ourself to the case of \mathbf{N} being a W^* -representable *-subalgebra, we prove that π is decomposed into three parts by three orthogonal central projections z_1, z_2, z_3 of \mathbf{N} . The first component is a normal projection of norm one from \mathbf{M} to $\mathbf{N}z_1$, the second singular one to $\mathbf{N}z_2$ and z_1, z_2 are maximal central projections having these properties. In the last section we discuss on the σ -weak continuity property of π and the relation to the other continuity. We can prove that π is σ -weakly continuous if and only if the kernel of π is σ -weakly closed.

1. Preliminaries. Consider a W^* -algebra \mathbf{M} , its conjugate space \mathbf{M}^* and the space \mathbf{M}_* of all σ -weakly continuous linear functionals on \mathbf{M} . We define the operators R_a and L_a on \mathbf{M}^* for each $a \in \mathbf{M}$ such that

$$\langle x, R_a \varphi \rangle = \langle xa, \varphi \rangle$$
 and $\langle x, L_a \varphi \rangle = \langle ax, \varphi \rangle$

for all $a \in \mathbf{M}$, $\varphi \in \mathbf{M}^*$. The following properties are easily verified: $R_{(\lambda^a + \mu^b)} = \lambda R_a + \mu R_b$, $L_{(\lambda^a + \mu^b)} = \lambda L_a + \mu L_b$, $R_{ab} = R_a R_b$, $L_{ab} = L_b L_a$, where a and b are arbitrary elements of \mathbf{M} and λ , μ complex numbers.

A subspace of \mathbf{M}^* which is invariant both for every R_a and every L_a is called an invariant subspace. It can be shown that there exists a one-to-one correspondence between the σ -weakly closed ideal m of \mathbf{M} and the closed invariant subspace V of \mathbf{M}_* such that $m = V^0$ and $V = m^0$ where V^0 and m^0 denote the polar of V and m in \mathbf{M} and \mathbf{M}_* respectively.

A positive linear functional φ is called singular if there exists no non-zero positive normal linear functional ψ such as $\psi \leq \varphi$; we denote the closed subspace generated by all singular linear functionals on \mathbf{M} by \mathbf{M}_{*}^{\perp} . It can be shown that any closed invariant subspace V is decomposed such as

$$V = (V \cap \mathbf{M}_*) \bigoplus_{i} (V \cap \mathbf{M}_*^+), \text{ in particular } \mathbf{M}^* = \mathbf{M}_* \bigoplus_{i} \mathbf{M}_*^+,$$

the sum being l1-direct sum.

A uniformly continuous linear homomorphism π from a W^* -algebra \mathbf{M} to a W^* -algebra \mathbf{N} is called singular if ${}^t\pi$ (\mathbf{N}_*) $\subset \mathbf{M}_*^+$, where ${}^t\pi$ denote the transpose of π . We can prove that a positive singular mapping π from \mathbf{M} to \mathbf{N} has the property that there exists no non-zero normal linear homo-