A NOTE ON CONTRACTION SEMI-GROUPS OF OPERATORS

ISAO MIYADERA

(Received August 31, 1958)

1. Let $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ be a one-parameter semi-group of operators from an abstract (L)-space X into itself satisfying the following conditions:

- (a) For each $\xi > 0$, $T(\xi)$ is a contraction (transition) operator¹.
- (b) $T(\boldsymbol{\xi} + \eta) = T(\boldsymbol{\xi})T(\eta)$ for each $\boldsymbol{\xi}, \eta \ge 0$ and T(0) = I.
- (c) $\lim_{\xi \downarrow 0} T(\xi)x = x$ for each $x \in X$.

Such a semi-group is called a contraction (transition) semi-group of operators. We say that $\Sigma' = \{T'(\xi); 0 \leq \xi < \infty\}$ dominates $\Sigma = \{T(\xi); 0 \leq \xi < \infty\}$ if

$$T'(\boldsymbol{\xi})x \geq T(\boldsymbol{\xi})x$$

for each $x \ge 0$ and $\xi > 0$.

We shall deal with the problem on the generation of contraction semigroups dominating a given contraction semi-group. This problem has been discussed by G.E.H. Reuter²⁾.

2. We shall define a linear functional (e, \cdot) by

(2. 1) $(e, x) = ||x^+|| - ||x^-||$ for each $x \in X$. An elementary argument shows that (e, \cdot) is a positive linear functional and $|(e, x)| \leq ||x||$ for each $x \in X$.

The following theorem is due to Reuter and is a variant of the Hille-Yosida theorem which will be convenient for our purposes.

THEOREM 1. A linear operator A with an dense domain D(A) generates a contraction (transition) semi-group if and only if

- (i) $(e, Ax) \leq 0 \ (= 0)$ for $x \geq 0$ in D(A),
- (ii) for each $\lambda > 0$ and $x \in X$, the equation

 $\lambda y - Ay = x$

has a unique solution $y = R(\lambda; A) x \in D(A)$ and $R(\lambda; A) x \ge 0$ for $x \ge 0$.

We shall first prove the following

¹⁾ A positive linear operator T on X is called a contraction (transition) operator if $||Tx|| \le ||x|| (||Tx|| = ||x||)$ for $x \ge 0$.

²⁾ A note on contraction semi- groups, Math. Scand., vol. 3, 1955.