ON CONVERGENCE CRITERIA FOR FOURIER SERIES II

Kenji Yano

(Received March 10, 1958, Revised July 7, 1958)

1. Introduction. Let $\varphi(t)$ be integrable in $(0, \pi)$, even, periodic of period 2π , and let

$$\varphi(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos nt.$$

We write

$$\Phi_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} [\varphi(u) - s] du \qquad (\alpha > 0),$$
$$s_n = \frac{1}{2} a_0 + \sum_{\nu=1}^n a_{\nu}.$$

F. T. Wang [1] has proved that if $\beta > \alpha > 0$, $\varphi(t) \in L$, $\Phi_{\alpha}(t) = o(t^{\beta})$ as $t \to 0$ and if $a_n > -An^{-\alpha/\beta}$, A > 0, then $s_n \to s$ as $n \to \infty$. In order to prove this, Wang used the method of Riesz summability. In this paper we shall give an alternative proof by a method of generalized de la Vallée Poussin summability. In § 4 we shall refer to jump functions. This note is a continuation of K. Yano [5], but may be readed free from it.

DEFINITION 1. We define g(x) such as $1^{\circ} g(x) > 0$ for $x \ge x_0 > 0$, $2^{\circ} g(x) \uparrow \infty$ as $x \uparrow \infty$, and $3^{\circ} H \le g(x^{\delta})/g(x) \le 1$, $0 < \delta < 1$ for all $x \ge x_0$, where $H = H(\delta)$ is a positive constant depending on δ only.

Then we see easily that $g(x) = o(x^{\epsilon})$ as $x \to \infty$ for every positive ϵ . In this definition we require no differentiability of g(x). We may take for g(x), e.g.,

$$\log x$$
, $(\log x)^{\alpha} \log \log x \ (\alpha \ge 0)$ and $\log_p x$,

where \log_p denotes the *p*-times iterated logarithm. For the sake of simplicity we denote $(g(x))^{\alpha}$ by $g(x)^{\alpha}$ throughout this paper.

THEOREM 1.¹⁾ Let $\beta \ge \alpha > 0$ and let g(x) be unity or defined by Definition 1. If

(1.1)
$$\int_0^t |\Phi_{\alpha}(u)| \ du = o\left(t^{\beta+1}/g\left(\frac{1}{t}\right)\right) \qquad (t \to 0),$$

and if for any assigned positive &

¹⁾ $\varphi(t)$ requires no integrability in Lebesgue sense.