ON THE RIESZ SUMMABILITY OF FOURIER SERIES

GEN-ICHIRÔ SUNOUCHI

(Received April 13, 1959)

Let f(x) be an integrable and periodic function with period 2π , and let

(1)
$$f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

F.T. Wang [4] proved the following theorem: If $1 < \alpha < 2$, and the series

$$\sum_{n=2}^{\infty} (a_n^2 + b_n^2) (\log n)^{\alpha-1}$$

converges, then the Fourier series (1) is summable $(R, \exp(\log n)^{\alpha}, \delta)$ almost everywhere, for any positive δ .

In this note we shall give some better results than the above theorem.

THEOREM 1. If $1 < \alpha < \infty$, and the series

$$\sum_{n=2}^{\infty} (a_n^2 + b_n^2) \{ \log (\log n) \}$$

converges, then Fourier series (1) is summable $(R, \exp(\log n)^{\alpha}, \delta)$ almost everywhere for any positive δ .

THEOREM 2. If $0 < \alpha \le 1$, and the series

$$\sum_{n=2}^{\infty} (a_n^2 + b_n^2) (\log n)^{\alpha}$$

converges, then the Fourier series (1) is summable $(R, \exp{\{\exp{(\log n)^{\alpha}\}}, \delta)}$, almost everywhere for any positive δ .

In Theorem 2, if we put $\alpha=1$, then the convergency of $\sum_{n=2}^{\infty}(a_n^2+b_n^2)\log n$ implies the (R,e^n,δ) summability of (1) almost everywhere. Since (R,e^n,δ) summation is equivalent to convergence, this case is nothing but the theorem of Kolmogoroff-Seliverstoff-Plessner. Thus our theorems link the theorem of Kolmogoroff-Seliverstoff-Plessner and the theorem of Fejér-Lebesgue. Improvement of our results may be difficult.

Our theorems are easy consequences of the following two propositions. PROPOSITION 1. The Lebesgue constant of $(R, \Lambda_n, 1)$ summation of the