ARITHMETIC OF GROUP REPRESENTATIONS

SHUICHI TAKAHASHI

(Received January 15, 1959)

Let \mathfrak{G} be a finite group, k be an algebraic field of finite degree over the field of rationals Q. In a representation space V over k we consider a $\Gamma = \mathfrak{o}[\mathfrak{G}]$ -lattice (Gitter) M in V which is a regular \mathfrak{o} -right module and \mathfrak{G} -left module where \mathfrak{o} is the ring of integers in k. The set of all Γ -lattices which we denotes by $\{M; k/\mathfrak{o}\}$ can be classified into Γ -isomorphic Γ -lattices in the following way:

$$\{M; k/0\} = \{M_1; 0/0\} + \dots + \{M_c; 0/0\}.$$

If $k = \mathbf{Q}$ is the field of rationals and V is irreducible, this class number is always finite and was proved by C. Jordan [13]¹⁾.

In the book of Speiser [20] this theorem was proved only in two special cases, namely, \mathfrak{G} is a cyclic group or V is absolutely irreducible. The reason for this may be explained by the following considerations.

Let \mathfrak{p} be a finite or infinite prime. We can consider \mathfrak{p} -extension $M_{\mathfrak{p}}$ of the Γ -lattice M and put

$$\{M_{\mathfrak{p}}; k_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\} = \{M_{\mathfrak{p}}^{(1)}; \mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\} + \dots + M_{\mathfrak{p}}^{(j)}; \mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}.$$

The local class number $j = j(\mathfrak{p})$ is always finite and = 1 if \mathfrak{p} does not divide the order $g = \# \mathfrak{G}$ of the group \mathfrak{G} .

If we define genus of M as

$$\{M; \,\overline{\mathfrak{o}}/\mathfrak{o}\} = \bigcap \{M; \,\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}$$

then the number of genera in all Γ -lattices in V is

$$j = \prod_{\mathfrak{p}|g} j(\mathfrak{p})$$

and is finite (§7). If M is absolutely irreducible we have

$$c = j \qquad (\$ 10).$$

On the other hand, number of classes in a genus is expressible as a kind of class number of a suitable algebraic group (§9), which was considered by T. Ono [17] and its finiteness was proved for commutative case by him. Simple considerations show that if \mathfrak{G} is cyclic and $k = \mathbf{Q}$

¹⁾ Number in the bracket refers to the bibliography at the end of this paper.