SEMI-GROUPS OF OPERATORS IN FRÉCHET SPACE AND APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

ISAO MIYADERA

(Received December 16, 1958)

1. Introduction. This paper is concerned with semi-groups of operators in Fréchet space and its application to the Cauchy problem for some linear partial differential equations with constant coefficients.

A topological vector space is called a Fréchet space if it is locally convex, complete and metrizable.

We shall deal with a semi-group of operators $\{T(\xi); 0 \leq \xi < \infty\}$ satisfying the following conditions:

(1) For each $\xi \ge 0$, $T(\xi)$ is a continuous linear operator from a Fréchet space X into itself and

$$T(\xi + \eta) = T(\xi)T(\eta)$$
 for $\xi, \eta \ge 0$,
 $T(0) = I$ (the identity).

(2) There exists a non-negative number σ such that

$$e^{-\sigma\xi}T(\xi)x;\xi\geq 0$$

is bounded in X for each $x \in X$.

(3)
$$\lim_{\xi \downarrow 0} T(\xi)x = x \qquad \text{for each } x \in X.$$

Since a Banach space is obviously a Fréchet space, our semi-groups are an extention of semi-groups of class (C_0) in Banach space. (For semi-groups in Banach space see the book of E. Hille and R. S. Phillips [3].)

We first remark that the conditions (1) and (3) imply the condition (2) if X is a Banach space. For $M \equiv \sup_{\substack{0 \leq \xi \leq 1 \\ 0 \leq \xi \leq 1}} ||T(\xi)|| < \infty$ by the uniform boundedness theorem, and hence $||T(\xi)|| \leq M \cdot \exp(\xi \log M)$ for each $\xi \geq 0$. But this is not true in general if X is a Fréchet space.

EXAMPLE. We consider real valued functions of one real variable. C^{∞} denotes the space of ∞ times continuously differentiable functions. It is well known that the space C^{∞} becomes a Fréchet space under the family of seminorms $\{p_{m,k}(\cdot); m, k = 0, 1, 2, \dots\}$, where

(1.1)
$$p_{m,k}(x) = \sup_{|t| \leq k} |x^{(m)}(t)| \qquad \text{for each } x \in C^{\infty}.$$

We define