ON PRODUCTS OF HOCHSCHILD GROUPS

HISASHI YAMASAKI

(Received December 10, 1958)

Introduction. We shall consider three K-algebras Λ , Γ , Σ , where K is a commutative ring, and that modules with operators are all unitary. ${}_{\Lambda}A$ means a left Λ -module, and we transfer ${}_{\Lambda}A$ to A_{Λ^*} in many case, where Λ^* is the "opposite" algebra of Λ . In the situation $(A_{\Lambda\otimes\Gamma}, {}_{\Lambda}B_{\Sigma})^{1}$, we convert $A \bigotimes_{\Lambda}B$ into a right $\Gamma \bigotimes \Sigma$ -module by setting

$$(a \otimes b)(\gamma \otimes \sigma) = a\gamma \otimes b\sigma.$$

Similarly in the situation $({}_{\Lambda}B_{\Sigma}, C_{\Gamma\otimes\Sigma})$ we convert $\operatorname{Hom}_{\Sigma}(B, C)$ into a right $\Lambda \otimes \Gamma$ -module by setting

$$(f(\mathbf{\lambda} \bigotimes \mathbf{\gamma}))b = (f(\mathbf{\lambda}b))\mathbf{\gamma}.$$

There are associative formulae:

(1) $r: (A \bigotimes_{\Lambda} B) \bigotimes_{\Gamma \otimes \Sigma} C \approx A \bigotimes_{\Lambda \otimes \Gamma} (B \bigotimes_{\Sigma} C),$ $(A_{\Lambda_{\circ}\Gamma}, {}_{\Lambda}B_{\Sigma}, {}_{\Gamma \otimes \Sigma} C)$ such that $r[(a \bigotimes b) \bigotimes c] = a \bigotimes (b \bigotimes c),$

(2) $s: \operatorname{Hom}_{A\otimes\Gamma}(A, \operatorname{Hom}_{\Sigma}(B, C)) \approx \operatorname{Hom}_{\Gamma\otimes\Sigma}(A \otimes_{A} B, C),$ $(A_{A\otimes\Gamma}, {}_{A}B_{\Sigma}, C_{\Gamma\otimes\Sigma})$ such that $(sf)(a \otimes b) = (fa)b$ for $f: A \to \operatorname{Hom}_{\Sigma}(B, C),$ (3) $t: \operatorname{Hom}_{A\otimes\Gamma}(A, \operatorname{Hom}_{\Sigma}(B, C)) \approx \operatorname{Hom}_{\Sigma\otimes\Gamma}(B \otimes_{A} A, C),$ $({}_{A\otimes\Gamma}A, {}_{\Sigma}B_{A}, {}_{\Sigma\otimes\Gamma}C)$

such that $(tg)(b \otimes a) = g(a)b$ for $g: A \to \operatorname{Hom}_{\Sigma}(B, C)$. (p. 165 of [1].)

Since these isomorphisms establish natural equivalences of functors, we get the transition of "projective" or "injective":

PROPOSITION 1 (pp. 165-6 of [1]). In the situation $(A_{\Lambda\otimes\Gamma}, {}_{\Lambda}B_{\Sigma})$ assume that A is $\Lambda\otimes\Gamma$ -projective and B is Σ -projective. Then $A\otimes_{\Lambda}B$ is projective as a right $\Gamma\otimes\Sigma$ -module.

PROPOSITION 2 (loc. cit.). In the situation $({}_{\Lambda}B_{\Sigma}, C_{\Gamma\otimes\Sigma})$ assume that B is Λ -projective and C is $\Gamma\otimes\Sigma$ -injective. Then Hom_{Σ}(B, C) is injective as a right $\Lambda\otimes\Gamma$ -module.

Prop. 1 and Prop. 2 yield fundamental facts for the product theory, for instance,

PROPOSITION 3. (p. 166 of [1]). In the situation $(A_{\Lambda\otimes\Gamma}, {}_{\Lambda}B_{\Sigma})$ let X be a $\Lambda\otimes\Gamma$ -projective resolution of A, and Y a $\Lambda^*\otimes\Sigma$ -projective resolution of B

¹⁾ \bigotimes means tensor product over K; occasionally the mention of the rings of reference K may be omitted when no confusion can occur.