ANALYTIC TENSOR AND ITS GENERALIZATION

SHUN-ICHI TACHIBANA

(Received September 20, 1959)

In our previous papers [7], [8],¹⁾ the notion of almost-analytic vector was introduced in certain almost-Hermitian spaces. In this paper we shall deal with tensors and obtain the notion of Φ -tensors which contains, as special cases, the one of analytic tensors and decomposable tensors.

1. Let us consider an *n*-dimensional space²) which admits a tensor field φ_i^{j} of type (1, 1). Let $\xi_{(i)}^{(j)} \equiv \xi_{i_p} \dots _{i_1}^{i_q \dots i_1}$ be a tensor of type (q, p). If it commutes with φ_i^{j} , then we shall say that $\xi_{(i)}^{(j)}$ is pure with respect to the corresponding indices, namely it is pure with respect to i_k and j_h , if

(1)
$$\xi_{i_{p}\cdots r\cdots i_{1}}^{(j)} \varphi_{i_{k}}^{r} = \xi_{(j)}^{i_{j}} \cdots r\cdots j_{1} \varphi_{r}^{j}_{h}$$

and pure with respect to i_k and i_h , if

$$\xi_{i_p\cdots \cdots i_k\cdots i_1}{}^{(j)}\varphi_{i_k}{}^r = \xi_{i_p\cdots i_k\cdots \cdots i_1}{}^{(j)}\varphi_{i_k}{}^r.$$

If $\xi_{(i)}^{(j)}$ anti-commutes with φ_i^{j} then we shall say that it is hybrid with respect to the corresponding indices. Thus if

(2)
$$\xi_{i_{p}\cdots r\cdots i_{1}}^{(j)}\varphi_{i_{k}}^{r} = -\xi_{(i)}^{j_{q}\cdots r\cdots j_{1}}\varphi_{r}^{j_{k}},$$

for example, holds good, then it is hybrid with respect to i_k and j_h . $\xi_{(i)}^{(j)}$ is called pure (resp. hybrid) if it is pure (resp. hybrid) with respect to all its indices.

 $\varphi_i^{\ j}$ itself and $\delta_i^{\ j}$ are examples of the pure tensor. If $\varphi_i^{\ j}$ is a regular tensor i.e. det $(\varphi_i^{\ j}) \neq 0$, then the tensor whose components are given by the elements of the inverse matrix of $(\varphi_i^{\ j})$ is also pure.

LEMMA 1. If $\xi_{(i)}^{(i)}$ is pure (hybrid) with respect to some indices, then so is $\dot{\xi}_{(i)}^{(j)} = \xi_{i_p \cdots i_{2^r}}^{(j)} \varphi_{i_1}^r$.

We shall prove only the case when $\xi_{(i)}^{(j)}$ is pure with respect to i_1 and i_k (k = 1). In fact, we have

$$\overset{*}{\xi_{i_p\cdots r\cdots i_1}} \overset{(j)}{=} \varphi_{i_k}{}^r = \xi_{i_p\cdots r\cdots i_2 \iota}{}^{(j)} \varphi_{i_k}{}^r \varphi_{i_1}{}^t = \xi_p \cdots {}^r \varphi_{i_1}{}^r \varphi_{i_1}{}^r$$

¹⁾ The number in brackets refers to the bibliography at the end of the paper.

²⁾ We shall mean by a space a differentiable manifold of class C^{∞} , and denote by x^i its local coordinates. Indices run over 1, 2,n.