THE CAUCHY PROPERTY OF THE GENERALIZED APPROXIMATELY CONTINUOUS PERRON INTEGRAL

ΥΌΤΟ ΚυβΟΤΑ

(Received May 20, 1959)

1. Introduction. We say an integral has the Cauchy property, if it satisfies the following condition (C).

(C) If f(x) is defined in [a, b] and is integrable in each interval $[a + \varepsilon, b - \eta]$, where $a < a + \varepsilon < b - \eta < b$ and

$$\lim_{\epsilon,\eta\to 0}\int_{a+\epsilon}^{b-\eta}f(t)dt \qquad (*)$$

exists, then f(x) is integrable in [a, b] and the integral over [a, b] is equal to the above limit.

Both the special and the general Denjoy integrals have this property. M. E. Grimshaw [1] proved that the approximately continuous Perron integral defined by J. C. Burkill [2] satisfies the condition (C) with the approximate limit instead of the ordinary limit in (*).

By the use of a similar method we will show that the corresponding property is possessed by the generalized approximately continuous Perron integral dfiened by G. Sunouchi and M. Utagawa [3].

The writer expresses his thanks to Dr. G. Sunouchi for his suggestions and criticisms.

2. Generalized approximately continuous Perron integral.

DEFINITION 2. 1. U(x) [L(x)] is termed upper [lower] function of a measurable f(x) in [a, b], provided that

- (i) U(a) = 0 [L(a) = 0],
- (ii) AD $U(x) > -\infty [\overline{AD} L(x) < +\infty]$ at each point x,

(iii) AD $U(x) \ge f(x)$ [$\overline{AD} L(x) \le f(x)$] at each point x.

DEFINITION 2.2. If f(x) has upper and lower functions in [a, b] and

l. u. b.
$$L(b) = g. l. b. U(b),$$

then f(x) is termed integrable in AP-sense or AP-integrable. The common value of the two bounds is called the definite AP-integral of f(x) and