ON SOME PROPERTIES OF π -STRUCTURES ON DIFFERENTIABLE MANIFOLD

CHEN-JUNG HSU

(Received May 17, 1956)

D. C. Spencer $[1]^{1}$ considered under the name "complex almost-product structure" the structure on the *n*-dimensional differentiable manifold V_n defined by giving two differentiable distributions T_1 , T_2 which assign two complemented subspaces of dimension ≥ 1 in the complexified tangent space T_x^{σ} at each point $x \in V_n$. G. Legrand [2] called such structure as a π -structure and studied it by generalizing most properties of the almost complex structure which can be regarded as a special case of it [3].

In the following, we assume that on the manifold a structure is defined by giving $r \ (2 \leq r \leq n)$ differentiable distributions T_1, \ldots, T_r which assign r complemented subspaces of dimension ≥ 1 in the complexified tangent space $T_x^c(T_x^c = T_1 + \ldots + T_r)$: direct sum) at each point $x \in V_n$. We call such structure as an $r \cdot \pi$ -structure if we want to express the number of the distributions explicitly. Whereas we call it simply as a π -structure if we need not (or can not) express the number r definitely. We generalize some properties of π -structure in the sense of Legrand to the $r \cdot \pi$ -structure.

In this note we assume that the differentiable manifold V_n as well as the distributions T_1, \ldots, T_r are of class C^{∞} unless we state it explicitly. It is also assumed that the manifold is arc-wise connected and the second countability axiom is satisfied.

1. Fundamental tensor of the π -structure. Suppose the differentiable manifold V_n has a π -structure defined by r differentiable distributions T_1, \ldots, T_r . Let the projection operations from T_x^c to T_α be denoted as \mathfrak{P}_α , then we have

(1.1)
$$\mathfrak{P}^2_{\alpha} = \mathfrak{P}_{\alpha}, \quad \mathfrak{P}_{\alpha}\mathfrak{P}_{\beta} = 0 \quad (\alpha \neq \beta),$$

$$(1.2) \qquad \qquad \mathfrak{P}_1 + \dots + \mathfrak{P}_r = \mathfrak{J},$$

where \Im denotes the identity transformation and the Greek indices vary from 1 to *r*. Define a transformation \Im on T_x^c by the following:

(1.3)
$$\mathfrak{F}v = \lambda \sum_{\alpha} w_{\alpha} \mathfrak{P}_{\alpha} v,$$

¹⁾ Numbers in bracket refer to the reference at the end of the paper.