SOME REMARKS ON A REPRESENTATION OF A GROUP

TEISHIRÔ SAITÔ

(Received April 2, 1960)

1. In the course of the study of the crossed product of rings of operators, it has been shown in [4] that an arbitrary countable group admits a faithful representation as a group of outer automorphisms¹⁾ of an approximately finite factor on a separable Hilbert space.

Let G be an arbitrary countably infinite group. Let Δ be the set of all functions $\alpha(q)$ on $G: \alpha(q) = 1$ on a finite subset of G and = 0 elsewhere, and Δ is an additive group under the addition $[\alpha + \beta](g) = \alpha(g) + \beta(g) \pmod{2}, 0(g)$ = 0 ($g \in G$). Let Δ' be the set of all functions $\varphi(\gamma)$ on Δ : $\varphi(\gamma) = 1$ on a finite subset of Δ and = 0 elsewhere. Δ' is an additive group under the addition $[\varphi + \psi](\gamma) = \varphi(\gamma) + \psi(\gamma) \pmod{2}$ and $0(\gamma) = 0 \ (\gamma \in \Delta)$. For every $\alpha \in \Delta$, $\varphi \to \varphi^{\alpha} : \varphi^{\alpha}(\gamma) = \varphi(\gamma + \alpha)$ is an automorphism of Δ' . Defining the product $(\varphi, \alpha)(\psi, \beta) = (\varphi^{\beta} + \psi, \alpha + \beta)$, we have a locally finite countably infinite group \mathfrak{G} of all elements $(\varphi, \alpha) \in (\Delta', \Delta)$ with the identity (0, 0) and $(\varphi, \alpha)^{-1} = (\varphi^{\alpha}, \alpha)$ Let **H** be the Hilbert space $l_2(\mathfrak{G})$, and for each $(\varphi, \alpha) \in \mathfrak{G}$ let $V_{(\varphi,\alpha)}$ be the unitary operator on **H** defined $[V_{(\varphi,\alpha)}f]((\psi,\beta)) = f((\psi,\beta)(\varphi,\alpha)).$ Then the ring of operators M generated by all $V_{(\varphi,\alpha)}$ is an approximately finite factor. Next, define an operator $T_g(T_g')$ on $\Delta(\Delta')$: $[T_g\alpha](g') = \alpha(gg')$ for all $\alpha \in \Delta, g, g' \in G; [T_g' \varphi](\gamma) = \varphi(Tg^{-1}\gamma) \text{ for all } \varphi \in G, \text{ and } g \to T_g(T_g') \text{ is an}$ anti-isomorphism of G into a group of automorphisms of Δ (Δ '). For each $g \in G$, we define a unitary operator U_g in **H** by $[U_g f]((\varphi, \alpha)) = f((T_g \varphi, T_g \alpha))$, and $g \to U_g$ is a faithful unitary representation of G and for each $g \in G(\neq e)$ $V_{(\varphi,\alpha)} \rightarrow U_g^{-1} V_{(\varphi,\alpha)} U_g = V_{(T'_{\alpha}\varphi,T_{\alpha}\alpha)}$ defines an outer automorphism of **M**.

The purpose of this paper is to discuss some algebraic properties of this representation.

2. From here to the end of this paper, G is a countably infinite group and **M** is an approximately finite factor in $\mathbf{H} = l_2(\mathfrak{G})$ associated with G as in § 1. By the fixed algebra of H, a subgroup of G, we mean the subalgebra of **M** composed of all elements of **M** which are simultaneously fixed under all members of H (see [1]). In this section we shall determine the fixed algebras of some

¹⁾ An automorphism of a ring means a *-automorphism.